DeepID-Net: Deformable deep convolutional neural networks for object detection
In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the def...
Saved in:
Published in | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2403 - 2412 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2015.7298854 |
Cover
Abstract | In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline. |
---|---|
AbstractList | In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline. |
Author | Xiaoou Tang Ping Luo Shi Qiu Yonglong Tian Shuo Yang Wanli Ouyang Hongsheng Li Zhe Wang Xingyu Zeng Chen-Change Loy Xiaogang Wang |
Author_xml | – sequence: 1 givenname: Wanli surname: Ouyang fullname: Ouyang, Wanli – sequence: 2 givenname: Xiaogang surname: Wang fullname: Wang, Xiaogang – sequence: 3 givenname: Xingyu surname: Zeng fullname: Zeng, Xingyu – sequence: 4 givenname: Shi surname: Qiu fullname: Qiu, Shi – sequence: 5 givenname: Ping surname: Luo fullname: Luo, Ping – sequence: 6 givenname: Yonglong surname: Tian fullname: Tian, Yonglong – sequence: 7 givenname: Hongsheng surname: Li fullname: Li, Hongsheng – sequence: 8 givenname: Shuo surname: Yang fullname: Yang, Shuo – sequence: 9 givenname: Zhe surname: Wang fullname: Wang, Zhe – sequence: 10 givenname: Chen-Change surname: Loy fullname: Loy, Chen-Change – sequence: 11 givenname: Xiaoou surname: Tang fullname: Tang, Xiaoou |
BookMark | eNqN0D1PwzAQgGGDikQL_QGIJSNLyvkrjtlQy0elqiAErJHjXKRAGpfYAfHvsWgHRqb3dHp0w03IqHMdEnJGYUYp6Mv56-PTjAGVM8V0nktxQCZUZIpnOhNwSMYUMp5mmurRn_mYTL1vSuAAudYMxmS9QNwuF-kaw1WywNr1G1O2mFRxnVjXfbp2CI3rTJt0OPS_CV-uf_dJtIkr39CGqENMZKfkqDatx-m-J-Tl9uZ5fp-uHu6W8-tV2jBBQ1oBr0AaW0qLhoMQWJfIEGKqXIFiuaRMWMWVQGOV0EYKKiusqVS1YoqfkIvd3W3vPgb0odg03mLbmg7d4AuqFHCqGGf_oFku4wMzGen5jjaIWGz7ZmP672L_YP4DJPludw |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2015.7298854 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1467369640 9781467369640 |
EISSN | 1063-6919 |
EndPage | 2412 |
ExternalDocumentID | 7298854 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i241t-d03d05acb5cea3044efbe2e0efbd8707285124c7374eac749a5415def157f7273 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Sep 05 09:29:48 EDT 2025 Fri Sep 05 14:05:00 EDT 2025 Wed Aug 27 02:49:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-d03d05acb5cea3044efbe2e0efbd8707285124c7374eac749a5415def157f7273 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1768585465 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1768585465 ieee_primary_7298854 proquest_miscellaneous_1770317232 |
PublicationCentury | 2000 |
PublicationDate | 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030089920 ssj0023720 ssj0003211698 |
Score | 2.507018 |
Snippet | In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2403 |
SubjectTerms | Computer vision Context modeling Deformable models Deformation Feature extraction Formability Learning Machine learning Neural networks Object detection Pattern recognition Pipelines Strategy Training Visualization |
Title | DeepID-Net: Deformable deep convolutional neural networks for object detection |
URI | https://ieeexplore.ieee.org/document/7298854 https://www.proquest.com/docview/1768585465 https://www.proquest.com/docview/1770317232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA7bnnyauonzFxF8tFvTJk3r6-aYwsYQJ3sbbXMFcbTDdS_-9V7SdIKK-JQSQtskd8l3uS93hNzwLERDIkFNUyx1OJPghGGgHBYHimUgZRViYzoLJgv-uBTLBrnd34UBAEM-g75-NL58VaQ7fVQ2QCAYhoI3SRPFrLqrVcuO72r_lYU-ehX20bIJor1HwdPZWIznM_CdIGKR9XAyNxoMX-ZPmuQl-vYDNtPKj-XZ7DnjNpnWf1tRTd76uzLppx_fAjn-tzuHpPt1u4_O9_vWEWlAfkzaFo5Sq-xbrKozPtR1HTIbAWweRs4Myjs6AgN4kzVQhdVUE9itIMdrqgNlmsLQzLcU29Ii0ac-2Lo0BLC8Sxbj--fhxLEZGZxX3OlLR7m-ckWcJiKF2Hc5hywBD1wsFCq-9BC_eTyVvuS4oEsexQIBgoKMCZlppHRCWnmRwymhUZykqQe-cDPBJRriOEGeZJmQkdJJQ3uko0dstamCbqzsYPXIdT0nK1QE7d2Icyh22xWTJpQ-D8RfbXS4foko8uz315-TAy0IFRfsgrTK9x1cIuookysjbp-24NI0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PejJN76N4NGuTZs0rdddZX3sIqLirbTNFETpitu9-OudpOkKKuIpJYS2SWaSbzJfZgCORRmTIZGTpmleeIIr9OI40h7PIs1LVKoJsTEcRYMHcfUkn-bgZHYXBhEt-Qy75tH68vW4mJqjslMCgnEsxTwsSLIq4ua2Vis9oW88WA78mHU4JNsmSmY-hcDkY7G-zyj0ooQnzsfJ_eS093h7Z2hesus-4XKt_Fig7a5zsQzD9n8bsslLd1rn3eLjWyjH_3ZoBTa-7vex29nOtQpzWK3BsgOkzKn7hKranA9t3TqM-ohvl31vhPUZ66OFvPkrMk3VzFDYnShnr8yEyrSFJZpPGLVl49yc-1Dr2lLAqg14uDi_7w08l5PBe6a9vva0H2pfZkUuC8xCXwgscwzQp0KT6quAEFwgChUqQUu6EkkmCSJoLLlUpcFKm9CpxhVuAUuyvCgCDKVfSqHIFKcJChQvpUq0SRu6DetmxNK3JuxG6gZrG47aOUlJFYx_I6twPJ2kXNlg-iKSf7UxAfsV4cid319_CIuD--FNenM5ut6FJSMUDTNsDzr1-xT3CYPU-YEVvU_zS9WH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=DeepID-Net%3A+Deformable+deep+convolutional+neural+networks+for+object+detection&rft.au=Wanli+Ouyang&rft.au=Xiaogang+Wang&rft.au=Xingyu+Zeng&rft.au=Shi+Qiu&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2403&rft.epage=2412&rft_id=info:doi/10.1109%2FCVPR.2015.7298854&rft.externalDocID=7298854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |