DeepID-Net: Deformable deep convolutional neural networks for object detection

In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the def...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2403 - 2412
Main Authors Ouyang, Wanli, Wang, Xiaogang, Zeng, Xingyu, Qiu, Shi, Luo, Ping, Tian, Yonglong, Li, Hongsheng, Yang, Shuo, Wang, Zhe, Loy, Chen-Change, Tang, Xiaoou
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2015.7298854

Cover

Abstract In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline.
AbstractList In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [14], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline.
Author Xiaoou Tang
Ping Luo
Shi Qiu
Yonglong Tian
Shuo Yang
Wanli Ouyang
Hongsheng Li
Zhe Wang
Xingyu Zeng
Chen-Change Loy
Xiaogang Wang
Author_xml – sequence: 1
  givenname: Wanli
  surname: Ouyang
  fullname: Ouyang, Wanli
– sequence: 2
  givenname: Xiaogang
  surname: Wang
  fullname: Wang, Xiaogang
– sequence: 3
  givenname: Xingyu
  surname: Zeng
  fullname: Zeng, Xingyu
– sequence: 4
  givenname: Shi
  surname: Qiu
  fullname: Qiu, Shi
– sequence: 5
  givenname: Ping
  surname: Luo
  fullname: Luo, Ping
– sequence: 6
  givenname: Yonglong
  surname: Tian
  fullname: Tian, Yonglong
– sequence: 7
  givenname: Hongsheng
  surname: Li
  fullname: Li, Hongsheng
– sequence: 8
  givenname: Shuo
  surname: Yang
  fullname: Yang, Shuo
– sequence: 9
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
– sequence: 10
  givenname: Chen-Change
  surname: Loy
  fullname: Loy, Chen-Change
– sequence: 11
  givenname: Xiaoou
  surname: Tang
  fullname: Tang, Xiaoou
BookMark eNqN0D1PwzAQgGGDikQL_QGIJSNLyvkrjtlQy0elqiAErJHjXKRAGpfYAfHvsWgHRqb3dHp0w03IqHMdEnJGYUYp6Mv56-PTjAGVM8V0nktxQCZUZIpnOhNwSMYUMp5mmurRn_mYTL1vSuAAudYMxmS9QNwuF-kaw1WywNr1G1O2mFRxnVjXfbp2CI3rTJt0OPS_CV-uf_dJtIkr39CGqENMZKfkqDatx-m-J-Tl9uZ5fp-uHu6W8-tV2jBBQ1oBr0AaW0qLhoMQWJfIEGKqXIFiuaRMWMWVQGOV0EYKKiusqVS1YoqfkIvd3W3vPgb0odg03mLbmg7d4AuqFHCqGGf_oFku4wMzGen5jjaIWGz7ZmP672L_YP4DJPludw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2015.7298854
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EISSN 1063-6919
EndPage 2412
ExternalDocumentID 7298854
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i241t-d03d05acb5cea3044efbe2e0efbd8707285124c7374eac749a5415def157f7273
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Sep 05 09:29:48 EDT 2025
Fri Sep 05 14:05:00 EDT 2025
Wed Aug 27 02:49:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-d03d05acb5cea3044efbe2e0efbd8707285124c7374eac749a5415def157f7273
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1768585465
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1768585465
ieee_primary_7298854
proquest_miscellaneous_1770317232
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
ssj0003211698
Score 2.507018
Snippet In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2403
SubjectTerms Computer vision
Context modeling
Deformable models
Deformation
Feature extraction
Formability
Learning
Machine learning
Neural networks
Object detection
Pattern recognition
Pipelines
Strategy
Training
Visualization
Title DeepID-Net: Deformable deep convolutional neural networks for object detection
URI https://ieeexplore.ieee.org/document/7298854
https://www.proquest.com/docview/1768585465
https://www.proquest.com/docview/1770317232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA7bnnyauonzFxF8tFvTJk3r6-aYwsYQJ3sbbXMFcbTDdS_-9V7SdIKK-JQSQtskd8l3uS93hNzwLERDIkFNUyx1OJPghGGgHBYHimUgZRViYzoLJgv-uBTLBrnd34UBAEM-g75-NL58VaQ7fVQ2QCAYhoI3SRPFrLqrVcuO72r_lYU-ehX20bIJor1HwdPZWIznM_CdIGKR9XAyNxoMX-ZPmuQl-vYDNtPKj-XZ7DnjNpnWf1tRTd76uzLppx_fAjn-tzuHpPt1u4_O9_vWEWlAfkzaFo5Sq-xbrKozPtR1HTIbAWweRs4Myjs6AgN4kzVQhdVUE9itIMdrqgNlmsLQzLcU29Ii0ac-2Lo0BLC8Sxbj--fhxLEZGZxX3OlLR7m-ckWcJiKF2Hc5hywBD1wsFCq-9BC_eTyVvuS4oEsexQIBgoKMCZlppHRCWnmRwymhUZykqQe-cDPBJRriOEGeZJmQkdJJQ3uko0dstamCbqzsYPXIdT0nK1QE7d2Icyh22xWTJpQ-D8RfbXS4foko8uz315-TAy0IFRfsgrTK9x1cIuookysjbp-24NI0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PejJN76N4NGuTZs0rdddZX3sIqLirbTNFETpitu9-OudpOkKKuIpJYS2SWaSbzJfZgCORRmTIZGTpmleeIIr9OI40h7PIs1LVKoJsTEcRYMHcfUkn-bgZHYXBhEt-Qy75tH68vW4mJqjslMCgnEsxTwsSLIq4ua2Vis9oW88WA78mHU4JNsmSmY-hcDkY7G-zyj0ooQnzsfJ_eS093h7Z2hesus-4XKt_Fig7a5zsQzD9n8bsslLd1rn3eLjWyjH_3ZoBTa-7vex29nOtQpzWK3BsgOkzKn7hKranA9t3TqM-ohvl31vhPUZ66OFvPkrMk3VzFDYnShnr8yEyrSFJZpPGLVl49yc-1Dr2lLAqg14uDi_7w08l5PBe6a9vva0H2pfZkUuC8xCXwgscwzQp0KT6quAEFwgChUqQUu6EkkmCSJoLLlUpcFKm9CpxhVuAUuyvCgCDKVfSqHIFKcJChQvpUq0SRu6DetmxNK3JuxG6gZrG47aOUlJFYx_I6twPJ2kXNlg-iKSf7UxAfsV4cid319_CIuD--FNenM5ut6FJSMUDTNsDzr1-xT3CYPU-YEVvU_zS9WH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=DeepID-Net%3A+Deformable+deep+convolutional+neural+networks+for+object+detection&rft.au=Wanli+Ouyang&rft.au=Xiaogang+Wang&rft.au=Xingyu+Zeng&rft.au=Shi+Qiu&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2403&rft.epage=2412&rft_id=info:doi/10.1109%2FCVPR.2015.7298854&rft.externalDocID=7298854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon