Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification

Whole slide histopathology images are the digitised version of physical slides that are acquired by stitching multiple overlapping image patches acquired at different optical magnifications. Typically sized at 2 GB per slide, computer aided analysis for whole slide pathology classification is a chal...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 578 - 581
Main Authors Das, Kausik, Conjeti, Sailesh, Roy, Abhijit Guha, Chatterjee, Jyotirmoy, Sheet, Debdoot
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2018
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI.2018.8363642

Cover

Abstract Whole slide histopathology images are the digitised version of physical slides that are acquired by stitching multiple overlapping image patches acquired at different optical magnifications. Typically sized at 2 GB per slide, computer aided analysis for whole slide pathology classification is a challenging task. Since local image patches generally provide more discriminative information as compared to the whole slide, challenges are associated with handling pathological heteregeneity varying across the whole slide. Given this challenge to classify the slide pathology using local image patches, in this paper we propose a multiple instance learning (MIL) framework for convolutional neural network (CNN). We introduce a new pooling layer that helps to aggregate most informative features from patches constituting a whole slide, without necessitating inter-patch overlap or global slide coverage. This helps our method to jointly learn to discover informative features locally as well as learn the classification margin globally; without the explicit need for individually annotating each local image patch in the training data. We have experimentally evaluated performance using a patient level 5-folded cross-validation with 58 malignant and 24 benign cases of breast tumors to obtain best performance of 89.52%, 89.06%, 88.84%, 87.67% accuracy at 40×, 100×, 200 × and 400× magnifications respectively while processing each slide in under 40 ms.
AbstractList Whole slide histopathology images are the digitised version of physical slides that are acquired by stitching multiple overlapping image patches acquired at different optical magnifications. Typically sized at 2 GB per slide, computer aided analysis for whole slide pathology classification is a challenging task. Since local image patches generally provide more discriminative information as compared to the whole slide, challenges are associated with handling pathological heteregeneity varying across the whole slide. Given this challenge to classify the slide pathology using local image patches, in this paper we propose a multiple instance learning (MIL) framework for convolutional neural network (CNN). We introduce a new pooling layer that helps to aggregate most informative features from patches constituting a whole slide, without necessitating inter-patch overlap or global slide coverage. This helps our method to jointly learn to discover informative features locally as well as learn the classification margin globally; without the explicit need for individually annotating each local image patch in the training data. We have experimentally evaluated performance using a patient level 5-folded cross-validation with 58 malignant and 24 benign cases of breast tumors to obtain best performance of 89.52%, 89.06%, 88.84%, 87.67% accuracy at 40×, 100×, 200 × and 400× magnifications respectively while processing each slide in under 40 ms.
Author Conjeti, Sailesh
Roy, Abhijit Guha
Chatterjee, Jyotirmoy
Das, Kausik
Sheet, Debdoot
Author_xml – sequence: 1
  givenname: Kausik
  surname: Das
  fullname: Das, Kausik
  organization: Department of Electrical Engineering, IIT Kharagpur, India
– sequence: 2
  givenname: Sailesh
  surname: Conjeti
  fullname: Conjeti, Sailesh
  organization: Chair for Computer Aided Medical Procedures, TU Munich, Germany
– sequence: 3
  givenname: Abhijit Guha
  surname: Roy
  fullname: Roy, Abhijit Guha
  organization: Department of Electrical Engineering, IIT Kharagpur, India
– sequence: 4
  givenname: Jyotirmoy
  surname: Chatterjee
  fullname: Chatterjee, Jyotirmoy
  organization: School of Medical Science and Technology, IIT Kharagpur, India
– sequence: 5
  givenname: Debdoot
  surname: Sheet
  fullname: Sheet, Debdoot
  organization: Department of Electrical Engineering, IIT Kharagpur, India
BookMark eNotkMtOwzAUBQ0CiVL6AYiNfyAlfiXOEioelYpYAOvq1r5pDcaOYoeqf08LPZuRZjGLc0nOQgxIyDUrp4yVze387X4-5SXTUy0qUUl-QiZNrZkSujqI-pSMWCNVoaXiF2SS0me5Xy2lKOWIDC-Dz67zSF1IGYJB6hH64MKaxpZaxI6aGH6iH7KLATwNOPR_yNvYfyXaxp6ueoSU6calHDvIm-jjeke3eyJN3lmkxkNKrnUGDpkrct6CTzg5ckw-Hh_eZ8_F4vVpPrtbFI5LlgtjVSWhMQJL0Fpb4Io3zKyUsEbhyrS24cIIizVrKwsIEqq95pYzpppSizG5-e86RFx2vfuGfrc8HiV-AZVdYnM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2018.8363642
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538636367
1538636360
EISSN 1945-8452
EndPage 581
ExternalDocumentID 8363642
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i241t-cd564a9c3e0a888da25291cb53dc5ebcfd923c3de71f6daea4a6ebc2d21159083
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-cd564a9c3e0a888da25291cb53dc5ebcfd923c3de71f6daea4a6ebc2d21159083
PageCount 4
ParticipantIDs ieee_primary_8363642
PublicationCentury 2000
PublicationDate 2018-04
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.3408604
Snippet Whole slide histopathology images are the digitised version of physical slides that are acquired by stitching multiple overlapping image patches acquired at...
SourceID ieee
SourceType Publisher
StartPage 578
SubjectTerms Biomedical imaging
Breast
Cancer
Convolutional neural network
Convolutional neural networks
Feature extraction
histopathology image analysis
multi-scale analysis
multiple instance learning
Support vector machines
Training
whole slide image analysis
Title Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification
URI https://ieeexplore.ieee.org/document/8363642
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTioxXf7MGjSfPaPK6KpRUqghZ6K5udiRSlLTVB8Nc7u4n1gQdPCQtLws7A983sNzMAF4xqgSwC6RSBHzuRX8SO8kg7Iak8kKmpvzbVyOO7eDiJbqdy2oLLTS0MEVnxGbnm1d7l41JXJlXWT8M4ZL7chja7WV2rtcmnMBRGHJo3F5e-l_VHD1cjo91K3WbfjwEqFj8GOzD-_HItG3l2qzJ39fuvpoz__bVd6H1V6on7DQbtQYsW-7D9rclgF6pxoxkUc0sFeUczKuJJLAuBRCthtOeND6oXYXpc2odViL8K5rUiN-L1Utj2xGaKsc3GizczXVcwVUUS2vBwIzyytu7BZHDzeD10mmELzpxBvHQ0yjhSmQ7JUxwVowpkkPk6lyFqSbkukKmgDpESticqUpGKeTlAjiDN3PTwADqL5YIOQaCfJoWP6EuMIk8xh0wlZolKCj4MhsMj6JoDnK3qfhqz5uyO_14-gS1jxFotcwqdcl3RGROBMj-3HvAB-Q23pw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagXH634dg8eTZrX5nFVLK02RbCF3spmdyJFaYsmCP56ZzexPvDgKWFhSZhZmG9mv5kP4IKimsdzj1u554ZW4OahJRyUlo8i83is-691N3I6DHvj4HbCJw24XPXCIKIhn6GtX81dvlrIUpfKOrEf-oSX12CdU1YRV91aq4oKBcOAkvP66tJ1kk7_4aqv2VuxXe_8IaFiIkh3G9LPb1fEkSe7LDJbvv8ay_jfn9uB9levHrtfRaFdaOB8D7a-jRlsQZnWrEE2M2CQdtRiEY9skTOFuGSafV6fQvHM9JRL8zAc8VdGyJZlmr5eMDOgWOsYm3o8e9P6uozAqkImNRLX1CPj7TaMuzej655Vyy1YMwrjhSUVDwORSB8dQXmxEh73Eldm3FeSYyZzRWBQ-goj8qgSKAIR0rKnKIfUyun-PjTnizkeAFNuHOWuUi5XQeAIQpExV0kkopyMQQHxEFragNNlNVFjWtvu6O_lc9jojdLBdNAf3h3DpnZoxZ05gWbxUuIpwYIiOzOn4QPJZrr6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Multiple+instance+learning+of+deep+convolutional+neural+networks+for+breast+histopathology+whole+slide+classification&rft.au=Das%2C+Kausik&rft.au=Conjeti%2C+Sailesh&rft.au=Roy%2C+Abhijit+Guha&rft.au=Chatterjee%2C+Jyotirmoy&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=578&rft.epage=581&rft_id=info:doi/10.1109%2FISBI.2018.8363642&rft.externalDocID=8363642