Brain MRI super resolution using 3D deep densely connected neural networks
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (S...
Saved in:
| Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 739 - 742 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1945-8452 |
| DOI | 10.1109/ISBI.2018.8363679 |
Cover
| Abstract | Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4× resolution-reduced images. |
|---|---|
| AbstractList | Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4× resolution-reduced images. |
| Author | Shi, Feng Chen, Yuhua Xie, Yibin Zhou, Zhengwei Christodoulou, Anthony G. Li, Debiao |
| Author_xml | – sequence: 1 givenname: Yuhua surname: Chen fullname: Chen, Yuhua organization: Department of Bioengineering, UCLA, Los Angeles, California, USA – sequence: 2 givenname: Yibin surname: Xie fullname: Xie, Yibin organization: Biomedical Image Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA – sequence: 3 givenname: Zhengwei surname: Zhou fullname: Zhou, Zhengwei organization: Department of Bioengineering, UCLA, Los Angeles, California, USA – sequence: 4 givenname: Feng surname: Shi fullname: Shi, Feng organization: Biomedical Image Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA – sequence: 5 givenname: Anthony G. surname: Christodoulou fullname: Christodoulou, Anthony G. organization: Biomedical Image Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA – sequence: 6 givenname: Debiao surname: Li fullname: Li, Debiao organization: Department of Bioengineering, UCLA, Los Angeles, California, USA |
| BookMark | eNotj81KxDAUhaMoOI59AHGTF2jNbdImXTrjqJURwZ_1kKQ3Uq1pSVpk3t6icxbng29x4JyTE997JOQSWAbAquv6dVVnOQOVKV7yUlZHJKmkgoKr8k8ckwVUokiVKPIzksT4yeZIITgTC_K4Crr19OmlpnEaMNCAse-mse09nWLrPyi_pQ3iMJeP2O2p7b1HO2JDPU5BdzPGnz58xQty6nQXMTlwSd7vNm_rh3T7fF-vb7ZpmwsYU6uMkVI1vNQSJdgiB9UYnSsHDUgQxpnCipKBnAUr0IDTrikdCm0rxyxfkqv_3RYRd0Nov3XY7w7v-S_6mFCD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI.2018.8363679 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781538636367 1538636360 |
| EISSN | 1945-8452 |
| EndPage | 742 |
| ExternalDocumentID | 8363679 |
| Genre | orig-research |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i241t-c8bb778d36a7e71c5218dba28f1d1714bfb5c46017f1d05eb1fafd6fe4ac9f0c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:50:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-c8bb778d36a7e71c5218dba28f1d1714bfb5c46017f1d05eb1fafd6fe4ac9f0c3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8363679 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.5153635 |
| Snippet | Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 739 |
| SubjectTerms | 3D Neural Network deep learning image enhancement Magnetic resonance imaging MRI Signal resolution Solid modeling Spatial resolution Super-resolution Three-dimensional displays Two dimensional displays |
| Title | Brain MRI super resolution using 3D deep densely connected neural networks |
| URI | https://ieeexplore.ieee.org/document/8363679 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21PcGFpUXs8oEjaZM68XItULWVihBQqbfKywQhUFu1yQG-HjsJZREHLnFkKUrkifw89ntvAC5CgUZbrgMVh2ngPaYCzSId2FiGMUo3PxYK7_EtG0zi0TSZ1uByo4VBxIJ8hm1_W5zl24XJ_VZZR1BGGZd1qHPBSq3WZj_FQWHsUvPq4DIKZWf40Bt67pZoV8_9KKBS4Ed_B8afby5pIy_tPNNt8_7LlPG_n7YLrS-lHrnbYNAe1HC-D9vfTAabMOr5KhBkfD8k63yJK-IS7Op_I571_kToNbGIS3fx8vQ3Yjz5xbilKPFul-rVNQVXfN2CSf_m8WoQVBUUgmeHzFlghNacC0uZ4sgj47BaWK26Io2sr3yuU52Y2OVk3HWEiZu3U5ValmKsjExDQw-gMV_M8RCI4SaiNunqSDlA40qgpNQF1EiRMGnDI2j6UZktS5OMWTUgx393n8CWj0xJgTmFRrbK8cyhe6bPi7B-AHwApYc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAWHgXxxgMjSZPGie21QNWUpkLQSt0qv4IQqK3aZICvx05CeYiBJY4sRYl8Ix9f-5xzAS49qqVQRDgce6ljPaYcEfnCUZh5WDMzPxYK72QQdUe4Nw7HNbhaaWG01gX5TLv2tjjLVzOZ262yJg2iICJsDdZDjHFYqrVWOyoGDLFJzqujS99jzfixHVv2FnWrJ3-UUCkQpLMNyee7S-LIi5tnwpXvv2wZ__txO7D_pdVD9ysU2oWanu7B1jebwQb02rYOBEoeYrTM53qBTIpd_XHI8t6fUHCDlNZzc7EC9TckLf1FmsUosn6X_NU0BVt8uQ-jzu3wuutUNRScZ4PNmSOpEIRQFUScaOJLg9ZUCd6iqa9s7XORilBik5UR0-GFZuZOeaqiVGMuWerJ4ADq09lUHwKSRPqBClvC5wbSCKeaBYEJqWQ0jJjyjqBhR2UyL20yJtWAHP_dfQEb3WHSn_Tjwd0JbNoolYSYU6hni1yfGazPxHkR4g9WO6jU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Brain+MRI+super+resolution+using+3D+deep+densely+connected+neural+networks&rft.au=Chen%2C+Yuhua&rft.au=Xie%2C+Yibin&rft.au=Zhou%2C+Zhengwei&rft.au=Shi%2C+Feng&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=739&rft.epage=742&rft_id=info:doi/10.1109%2FISBI.2018.8363679&rft.externalDocID=8363679 |