Brain MRI super resolution using 3D deep densely connected neural networks

Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (S...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 739 - 742
Main Authors Chen, Yuhua, Xie, Yibin, Zhou, Zhengwei, Shi, Feng, Christodoulou, Anthony G., Li, Debiao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2018
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI.2018.8363679

Cover

Abstract Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4× resolution-reduced images.
AbstractList Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4× resolution-reduced images.
Author Shi, Feng
Chen, Yuhua
Xie, Yibin
Zhou, Zhengwei
Christodoulou, Anthony G.
Li, Debiao
Author_xml – sequence: 1
  givenname: Yuhua
  surname: Chen
  fullname: Chen, Yuhua
  organization: Department of Bioengineering, UCLA, Los Angeles, California, USA
– sequence: 2
  givenname: Yibin
  surname: Xie
  fullname: Xie, Yibin
  organization: Biomedical Image Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
– sequence: 3
  givenname: Zhengwei
  surname: Zhou
  fullname: Zhou, Zhengwei
  organization: Department of Bioengineering, UCLA, Los Angeles, California, USA
– sequence: 4
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: Biomedical Image Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
– sequence: 5
  givenname: Anthony G.
  surname: Christodoulou
  fullname: Christodoulou, Anthony G.
  organization: Biomedical Image Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
– sequence: 6
  givenname: Debiao
  surname: Li
  fullname: Li, Debiao
  organization: Department of Bioengineering, UCLA, Los Angeles, California, USA
BookMark eNotj81KxDAUhaMoOI59AHGTF2jNbdImXTrjqJURwZ_1kKQ3Uq1pSVpk3t6icxbng29x4JyTE997JOQSWAbAquv6dVVnOQOVKV7yUlZHJKmkgoKr8k8ckwVUokiVKPIzksT4yeZIITgTC_K4Crr19OmlpnEaMNCAse-mse09nWLrPyi_pQ3iMJeP2O2p7b1HO2JDPU5BdzPGnz58xQty6nQXMTlwSd7vNm_rh3T7fF-vb7ZpmwsYU6uMkVI1vNQSJdgiB9UYnSsHDUgQxpnCipKBnAUr0IDTrikdCm0rxyxfkqv_3RYRd0Nov3XY7w7v-S_6mFCD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2018.8363679
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538636367
1538636360
EISSN 1945-8452
EndPage 742
ExternalDocumentID 8363679
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i241t-c8bb778d36a7e71c5218dba28f1d1714bfb5c46017f1d05eb1fafd6fe4ac9f0c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-c8bb778d36a7e71c5218dba28f1d1714bfb5c46017f1d05eb1fafd6fe4ac9f0c3
PageCount 4
ParticipantIDs ieee_primary_8363679
PublicationCentury 2000
PublicationDate 2018-04
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.5153635
Snippet Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis....
SourceID ieee
SourceType Publisher
StartPage 739
SubjectTerms 3D Neural Network
deep learning
image enhancement
Magnetic resonance imaging
MRI
Signal resolution
Solid modeling
Spatial resolution
Super-resolution
Three-dimensional displays
Two dimensional displays
Title Brain MRI super resolution using 3D deep densely connected neural networks
URI https://ieeexplore.ieee.org/document/8363679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21PcGFpUXs8oEjaZM68XItULWVihBQqbfKywQhUFu1yQG-HjsJZREHLnFkKUrkifw89ntvAC5CgUZbrgMVh2ngPaYCzSId2FiGMUo3PxYK7_EtG0zi0TSZ1uByo4VBxIJ8hm1_W5zl24XJ_VZZR1BGGZd1qHPBSq3WZj_FQWHsUvPq4DIKZWf40Bt67pZoV8_9KKBS4Ed_B8afby5pIy_tPNNt8_7LlPG_n7YLrS-lHrnbYNAe1HC-D9vfTAabMOr5KhBkfD8k63yJK-IS7Op_I571_kToNbGIS3fx8vQ3Yjz5xbilKPFul-rVNQVXfN2CSf_m8WoQVBUUgmeHzFlghNacC0uZ4sgj47BaWK26Io2sr3yuU52Y2OVk3HWEiZu3U5ValmKsjExDQw-gMV_M8RCI4SaiNunqSDlA40qgpNQF1EiRMGnDI2j6UZktS5OMWTUgx393n8CWj0xJgTmFRrbK8cyhe6bPi7B-AHwApYc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAWHgXxxgMjSZPGie21QNWUpkLQSt0qv4IQqK3aZICvx05CeYiBJY4sRYl8Ix9f-5xzAS49qqVQRDgce6ljPaYcEfnCUZh5WDMzPxYK72QQdUe4Nw7HNbhaaWG01gX5TLv2tjjLVzOZ262yJg2iICJsDdZDjHFYqrVWOyoGDLFJzqujS99jzfixHVv2FnWrJ3-UUCkQpLMNyee7S-LIi5tnwpXvv2wZ__txO7D_pdVD9ysU2oWanu7B1jebwQb02rYOBEoeYrTM53qBTIpd_XHI8t6fUHCDlNZzc7EC9TckLf1FmsUosn6X_NU0BVt8uQ-jzu3wuutUNRScZ4PNmSOpEIRQFUScaOJLg9ZUCd6iqa9s7XORilBik5UR0-GFZuZOeaqiVGMuWerJ4ADq09lUHwKSRPqBClvC5wbSCKeaBYEJqWQ0jJjyjqBhR2UyL20yJtWAHP_dfQEb3WHSn_Tjwd0JbNoolYSYU6hni1yfGazPxHkR4g9WO6jU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Brain+MRI+super+resolution+using+3D+deep+densely+connected+neural+networks&rft.au=Chen%2C+Yuhua&rft.au=Xie%2C+Yibin&rft.au=Zhou%2C+Zhengwei&rft.au=Shi%2C+Feng&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=739&rft.epage=742&rft_id=info:doi/10.1109%2FISBI.2018.8363679&rft.externalDocID=8363679