Fast and Efficient FPGA-Based Feature Detection Employing the SURF Algorithm
Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in seve...
        Saved in:
      
    
          | Published in | 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines pp. 3 - 10 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.01.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781424471423 0769540562 9780769540566 1424471427  | 
| DOI | 10.1109/FCCM.2010.11 | 
Cover
| Abstract | Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in several vision devices, the speed of the feature detection schemes severally affects the effectiveness of the complete systems. As a result, feature detectors are increasingly being implemented in state-of-the-art FPGAs. This paper describes an FPGA-based implementation of the SURF (Speeded-Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this algorithm is considered to be the most efficient feature detector algorithm available. Moreover, this is, to the best of our knowledge, the first implementation of this scheme in an FPGA. Our innovative system can support processing of standard video (640 x 480 pixels) at up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU by at least 8 times. Moreover, the proposed system, which is clocked at 200 MHz and consumes less than 20W, supports constantly a frame rate only 20% lower than the peak rate of a high-end GPU executing the same basic algorithm; the specified GPU consists of 128 floating point CPUs, clocked at 1.35 GHz and consumes more than 200W. | 
    
|---|---|
| AbstractList | Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in several vision devices, the speed of the feature detection schemes severally affects the effectiveness of the complete systems. As a result, feature detectors are increasingly being implemented in state-of-the-art FPGAs. This paper describes an FPGA-based implementation of the SURF (Speeded-Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this algorithm is considered to be the most efficient feature detector algorithm available. Moreover, this is, to the best of our knowledge, the first implementation of this scheme in an FPGA. Our innovative system can support processing of standard video (640 x 480 pixels) at up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU by at least 8 times. Moreover, the proposed system, which is clocked at 200 MHz and consumes less than 20W, supports constantly a frame rate only 20% lower than the peak rate of a high-end GPU executing the same basic algorithm; the specified GPU consists of 128 floating point CPUs, clocked at 1.35 GHz and consumes more than 200W. | 
    
| Author | Papaefstathiou, Ioannis Bouris, Dimitris Nikitakis, Antonis  | 
    
| Author_xml | – sequence: 1 givenname: Dimitris surname: Bouris fullname: Bouris, Dimitris email: dbouris@gmail.com organization: Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece – sequence: 2 givenname: Antonis surname: Nikitakis fullname: Nikitakis, Antonis email: anikita@mhl.tuc.gr organization: Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece – sequence: 3 givenname: Ioannis surname: Papaefstathiou fullname: Papaefstathiou, Ioannis email: ygp@mhl.tuc.gr organization: Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece  | 
    
| BookMark | eNpVj8tOwzAQRY2gErRkx46NfyDFY08yyTKEpiAVgYCuK5NMWqM8qsQs-veUx4bV1ZGuju6dirOu71iIK1BzAJXeFHn-ONfqB09EkFICqBEJ0KjTf6zNREy_m6lGY-hcBOP4oZQCimMDcCFWhR29tF0lF3XtSsedl8XzMgtv7ciVLNj6z4HlHXsuves7uWj3TX9w3Vb6HcvX9Ushs2bbD87v2ksxqW0zcvCXM7EuFm_5fbh6Wj7k2Sp0GsGHJSmFZRTV9A6IWCFRkpqKYmStIgAdpxqiElNMjieSUltrE1tTxER83G1m4vrX65h5sx9ca4fDJkJCRYn5Ajz5TwU | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/FCCM.2010.11 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 9781424471430 1424471435  | 
    
| EndPage | 10 | 
    
| ExternalDocumentID | 5474078 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i241t-c7004c55f7b1444d477893d764e20511269215c49484478c2aaa8af75e77e6633 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 9781424471423 0769540562 9780769540566 1424471427  | 
    
| IngestDate | Wed Aug 27 02:30:33 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| LCCN | 2010924337 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i241t-c7004c55f7b1444d477893d764e20511269215c49484478c2aaa8af75e77e6633 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_5474078 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-01-01 | 
    
| PublicationDateYYYYMMDD | 2010-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines | 
    
| PublicationTitleAbbrev | FCCM | 
    
| PublicationYear | 2010 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001766311 ssj0001129788  | 
    
| Score | 1.6307614 | 
    
| Snippet | Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 3 | 
    
| SubjectTerms | Clocks Computer vision Detectors Feature detectors Field programmable gate arrays FPGAs Humans Machine vision Object detection Object recognition OpenSurf Real time systems Robustness  | 
    
| Title | Fast and Efficient FPGA-Based Feature Detection Employing the SURF Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/5474078 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTrBwtIhbHhhxm8OxnbGUBoQoqoBK3SrbeYEKSFFJFn49do62QgwsURIrUfKc6Pv8ju8hdOEw4Jpph0hwE0LND0SkUCFRgseur23gzi4URw_sdkLvpsG0gS5XtTAAUCSfQdfuFrH8eKFz6yrrBZTbsFMTNblgZa3W2p9igKtWgi-OucFS1y1X6qHlJcyrC7u42fJKfaceZLX-UzXur7Lkw140GIzKLDDbaGijC0sBQtEOGtWPX-aevHXzTHX19y9lx_--3y7qrMv98HgFZHuoAek-2t5QKmyj-0h-ZVimMR4WmhPmPjga3_TJlUHBGFsimS8BX0NWpHaluOwkbK7FhmHip8ljhPvvL4vlPHv96KBJNHwe3JKqEQOZG4DPiLYa-DoIEq7M-ovGlHNDc2LOKHiOZWwsNMxBW6UZYzyhPSmlkAkPgHMw0-AfoFa6SOEQYVCJCDwQykwPFaGQ3JfUVZ4OQkgcpY9Q29pl9llqbcwqkxz_ffoEbZXRfOsSOUWtbJnDmSEJmTovvo4fkMmvgA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD-rFDzB-24NHB2xr1-2IyERlhCgk3EjbvVOiDoPbxV9vuw8gxoOXZVuzJX275Xn6fjwvQlctB5h0ZMvgYEYGUT-QwV3hGcJloWlLHbjTG8Vg4PTG5GFCJxV0vayFAYAs-Qwa-jSL5YdzmWpXWZMSpsNOG2iTEkJoXq218qgo6Cq14LNrptDUNPO9uqeZiWOVpV1MHVmhv1MOOqUCVDFuL_Pkvabf6QR5HphuNbTWhyWDIX8XBeUE8uyTt0aaiIb8_qXt-N8Z7qH6quAPD5dQto8qEB-gnTWtwhrq-_wrwTwOcTdTnVDvwf7wrm3cKBwMsaaS6QLwLSRZcleM817C6lmsOCZ-Hj_5uP3-Ml_MktePOhr73VGnZxStGIyZgvjEkFoFX1IaMaF2YCQkjCmiEzKHgNXSnM3xFHeQWmtGGc-VFufc5RGjwBioZbAPUTWex3CEMIjIpRa4Qi0PcT2XM5sTU1iSehC1hDxGNW2X6WeutjEtTHLy9-1LtNUbBf1p_37weIq289i-dpCcoWqySOFcUYZEXGRfyg__s7LN | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+18th+IEEE+Annual+International+Symposium+on+Field-Programmable+Custom+Computing+Machines&rft.atitle=Fast+and+Efficient+FPGA-Based+Feature+Detection+Employing+the+SURF+Algorithm&rft.au=Bouris%2C+Dimitris&rft.au=Nikitakis%2C+Antonis&rft.au=Papaefstathiou%2C+Ioannis&rft.date=2010-01-01&rft.pub=IEEE&rft.isbn=9781424471423&rft.spage=3&rft.epage=10&rft_id=info:doi/10.1109%2FFCCM.2010.11&rft.externalDocID=5474078 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424471423/lc.gif&client=summon&freeimage=true | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424471423/mc.gif&client=summon&freeimage=true | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424471423/sc.gif&client=summon&freeimage=true |