Fast and Efficient FPGA-Based Feature Detection Employing the SURF Algorithm

Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in seve...

Full description

Saved in:
Bibliographic Details
Published in2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines pp. 3 - 10
Main Authors Bouris, Dimitris, Nikitakis, Antonis, Papaefstathiou, Ioannis
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2010
Subjects
Online AccessGet full text
ISBN9781424471423
0769540562
9780769540566
1424471427
DOI10.1109/FCCM.2010.11

Cover

Abstract Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in several vision devices, the speed of the feature detection schemes severally affects the effectiveness of the complete systems. As a result, feature detectors are increasingly being implemented in state-of-the-art FPGAs. This paper describes an FPGA-based implementation of the SURF (Speeded-Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this algorithm is considered to be the most efficient feature detector algorithm available. Moreover, this is, to the best of our knowledge, the first implementation of this scheme in an FPGA. Our innovative system can support processing of standard video (640 x 480 pixels) at up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU by at least 8 times. Moreover, the proposed system, which is clocked at 200 MHz and consumes less than 20W, supports constantly a frame rate only 20% lower than the peak rate of a high-end GPU executing the same basic algorithm; the specified GPU consists of 128 floating point CPUs, clocked at 1.35 GHz and consumes more than 200W.
AbstractList Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in several vision devices, the speed of the feature detection schemes severally affects the effectiveness of the complete systems. As a result, feature detectors are increasingly being implemented in state-of-the-art FPGAs. This paper describes an FPGA-based implementation of the SURF (Speeded-Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this algorithm is considered to be the most efficient feature detector algorithm available. Moreover, this is, to the best of our knowledge, the first implementation of this scheme in an FPGA. Our innovative system can support processing of standard video (640 x 480 pixels) at up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU by at least 8 times. Moreover, the proposed system, which is clocked at 200 MHz and consumes less than 20W, supports constantly a frame rate only 20% lower than the peak rate of a high-end GPU executing the same basic algorithm; the specified GPU consists of 128 floating point CPUs, clocked at 1.35 GHz and consumes more than 200W.
Author Papaefstathiou, Ioannis
Bouris, Dimitris
Nikitakis, Antonis
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Bouris
  fullname: Bouris, Dimitris
  email: dbouris@gmail.com
  organization: Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece
– sequence: 2
  givenname: Antonis
  surname: Nikitakis
  fullname: Nikitakis, Antonis
  email: anikita@mhl.tuc.gr
  organization: Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece
– sequence: 3
  givenname: Ioannis
  surname: Papaefstathiou
  fullname: Papaefstathiou, Ioannis
  email: ygp@mhl.tuc.gr
  organization: Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece
BookMark eNpVj8tOwzAQRY2gErRkx46NfyDFY08yyTKEpiAVgYCuK5NMWqM8qsQs-veUx4bV1ZGuju6dirOu71iIK1BzAJXeFHn-ONfqB09EkFICqBEJ0KjTf6zNREy_m6lGY-hcBOP4oZQCimMDcCFWhR29tF0lF3XtSsedl8XzMgtv7ciVLNj6z4HlHXsuves7uWj3TX9w3Vb6HcvX9Ushs2bbD87v2ksxqW0zcvCXM7EuFm_5fbh6Wj7k2Sp0GsGHJSmFZRTV9A6IWCFRkpqKYmStIgAdpxqiElNMjieSUltrE1tTxER83G1m4vrX65h5sx9ca4fDJkJCRYn5Ajz5TwU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FCCM.2010.11
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424471430
1424471435
EndPage 10
ExternalDocumentID 5474078
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-c7004c55f7b1444d477893d764e20511269215c49484478c2aaa8af75e77e6633
IEDL.DBID RIE
ISBN 9781424471423
0769540562
9780769540566
1424471427
IngestDate Wed Aug 27 02:30:33 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2010924337
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-c7004c55f7b1444d477893d764e20511269215c49484478c2aaa8af75e77e6633
PageCount 8
ParticipantIDs ieee_primary_5474078
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationTitle 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines
PublicationTitleAbbrev FCCM
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766311
ssj0001129788
Score 1.6307614
Snippet Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications...
SourceID ieee
SourceType Publisher
StartPage 3
SubjectTerms Clocks
Computer vision
Detectors
Feature detectors
Field programmable gate arrays
FPGAs
Humans
Machine vision
Object detection
Object recognition
OpenSurf
Real time systems
Robustness
Title Fast and Efficient FPGA-Based Feature Detection Employing the SURF Algorithm
URI https://ieeexplore.ieee.org/document/5474078
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTrBwtIhbHhhxm8OxnbGUBoQoqoBK3SrbeYEKSFFJFn49do62QgwsURIrUfKc6Pv8ju8hdOEw4Jpph0hwE0LND0SkUCFRgseur23gzi4URw_sdkLvpsG0gS5XtTAAUCSfQdfuFrH8eKFz6yrrBZTbsFMTNblgZa3W2p9igKtWgi-OucFS1y1X6qHlJcyrC7u42fJKfaceZLX-UzXur7Lkw140GIzKLDDbaGijC0sBQtEOGtWPX-aevHXzTHX19y9lx_--3y7qrMv98HgFZHuoAek-2t5QKmyj-0h-ZVimMR4WmhPmPjga3_TJlUHBGFsimS8BX0NWpHaluOwkbK7FhmHip8ljhPvvL4vlPHv96KBJNHwe3JKqEQOZG4DPiLYa-DoIEq7M-ovGlHNDc2LOKHiOZWwsNMxBW6UZYzyhPSmlkAkPgHMw0-AfoFa6SOEQYVCJCDwQykwPFaGQ3JfUVZ4OQkgcpY9Q29pl9llqbcwqkxz_ffoEbZXRfOsSOUWtbJnDmSEJmTovvo4fkMmvgA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD-rFDzB-24NHB2xr1-2IyERlhCgk3EjbvVOiDoPbxV9vuw8gxoOXZVuzJX275Xn6fjwvQlctB5h0ZMvgYEYGUT-QwV3hGcJloWlLHbjTG8Vg4PTG5GFCJxV0vayFAYAs-Qwa-jSL5YdzmWpXWZMSpsNOG2iTEkJoXq218qgo6Cq14LNrptDUNPO9uqeZiWOVpV1MHVmhv1MOOqUCVDFuL_Pkvabf6QR5HphuNbTWhyWDIX8XBeUE8uyTt0aaiIb8_qXt-N8Z7qH6quAPD5dQto8qEB-gnTWtwhrq-_wrwTwOcTdTnVDvwf7wrm3cKBwMsaaS6QLwLSRZcleM817C6lmsOCZ-Hj_5uP3-Ml_MktePOhr73VGnZxStGIyZgvjEkFoFX1IaMaF2YCQkjCmiEzKHgNXSnM3xFHeQWmtGGc-VFufc5RGjwBioZbAPUTWex3CEMIjIpRa4Qi0PcT2XM5sTU1iSehC1hDxGNW2X6WeutjEtTHLy9-1LtNUbBf1p_37weIq289i-dpCcoWqySOFcUYZEXGRfyg__s7LN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+18th+IEEE+Annual+International+Symposium+on+Field-Programmable+Custom+Computing+Machines&rft.atitle=Fast+and+Efficient+FPGA-Based+Feature+Detection+Employing+the+SURF+Algorithm&rft.au=Bouris%2C+Dimitris&rft.au=Nikitakis%2C+Antonis&rft.au=Papaefstathiou%2C+Ioannis&rft.date=2010-01-01&rft.pub=IEEE&rft.isbn=9781424471423&rft.spage=3&rft.epage=10&rft_id=info:doi/10.1109%2FFCCM.2010.11&rft.externalDocID=5474078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424471423/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424471423/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424471423/sc.gif&client=summon&freeimage=true