A Neural Network-based method for continuous blood pressure estimation from a PPG signal

There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) pp. 280 - 283
Main Authors Kurylyak, Yuriy, Lamonaca, Francesco, Grimaldi, Domenico
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2013
Subjects
Online AccessGet full text
ISBN9781467346214
1467346217
ISSN1091-5281
DOI10.1109/I2MTC.2013.6555424

Cover

Abstract There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the Multiparameter Intelligent Monitoring in Intensive Care waveform database for better representation of possible pulse and pressure variation. In total there were analyzed more than 15000 heartbeats and 21 parameters were extracted from each of them that define the input vector for the ANN. The comparison between estimated and reference values shows better accuracy than the linear regression method and satisfy the American National Standards of the Association for the Advancement of Medical Instrumentation.
AbstractList There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the Multiparameter Intelligent Monitoring in Intensive Care waveform database for better representation of possible pulse and pressure variation. In total there were analyzed more than 15000 heartbeats and 21 parameters were extracted from each of them that define the input vector for the ANN. The comparison between estimated and reference values shows better accuracy than the linear regression method and satisfy the American National Standards of the Association for the Advancement of Medical Instrumentation.
Author Lamonaca, Francesco
Grimaldi, Domenico
Kurylyak, Yuriy
Author_xml – sequence: 1
  givenname: Yuriy
  surname: Kurylyak
  fullname: Kurylyak, Yuriy
  email: kurylyak@deis.unical.it
  organization: Dept. of Comput. Sci., Modeling, Electron. & Syst. Sci., Univ. of Calabria, Rende, Italy
– sequence: 2
  givenname: Francesco
  surname: Lamonaca
  fullname: Lamonaca, Francesco
  email: flamonaca@deis.unical.it
  organization: Dept. of Comput. Sci., Modeling, Electron. & Syst. Sci., Univ. of Calabria, Rende, Italy
– sequence: 3
  givenname: Domenico
  surname: Grimaldi
  fullname: Grimaldi, Domenico
  email: grimaldi@deis.unical.it
  organization: Dept. of Comput. Sci., Modeling, Electron. & Syst. Sci., Univ. of Calabria, Rende, Italy
BookMark eNo1kNtKAzEYhCNWsK19Ab3JC2z9c24uS9Fa8NCLCt6VZPOvrm43JdlFfHsXrFfDDMzHMBMyamOLhFwzmDMG9nbDn3arOQcm5lopJbk8IxMmtRFScyHOycyaxb9nckTGQ4sVii_YJZnl_AkAA0gLMGPytqTP2CfXDNJ9x_RVeJcx0AN2HzHQKiZaxrar2z72mfomDuExYc59Qoq5qw-uq2NLqxQP1NHtdk1z_d665opcVK7JODvplLze3-1WD8Xjy3qzWj4WNZesK7ytAljw1gjDKkDtNJcmBFMqywMEMNxjhVZpwRfGYanKsgxWeOHAgwExJTd_3BoR98c0DEo_-9Mx4hffwVcU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/I2MTC.2013.6555424
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISBN 1467346233
9781467346238
EndPage 283
ExternalDocumentID 6555424
Genre orig-research
GroupedDBID 29F
6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i241t-b9fd090b97371f0e6a6247dd7c592d0d072befe9563287aec5cccd93b3a0b0703
IEDL.DBID RIE
ISBN 9781467346214
1467346217
ISSN 1091-5281
IngestDate Wed Aug 27 04:13:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-b9fd090b97371f0e6a6247dd7c592d0d072befe9563287aec5cccd93b3a0b0703
PageCount 4
ParticipantIDs ieee_primary_6555424
PublicationCentury 2000
PublicationDate 2013-05
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05
PublicationDecade 2010
PublicationTitle 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
PublicationTitleAbbrev I2MTC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106307
ssj0006477
Score 1.9827707
Snippet There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to...
SourceID ieee
SourceType Publisher
StartPage 280
SubjectTerms Artificial neural networks
Biomedical monitoring
Blood pressure
Estimation
hypertension
Linear regression
Monitoring
neural networks
Neurons
photoplethysmography
Title A Neural Network-based method for continuous blood pressure estimation from a PPG signal
URI https://ieeexplore.ieee.org/document/6555424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CJCZ6UQHjOz14dKNrt5UeDRHRBMMBEm6kryVEMgxsF_96226AGg-etu6wR7Ps933d7wFwL6iJMovjgdDcNigZTQPey2TAtdJKJRYyvXxs9JYOp_HrLJk14GGnhTHGePKZCd2u_5evV6p0S2XdNLHgR-IDOGCMV1qt_XpK5Nyjds2W01D6YBWLh7bZ6kVe1JUyGqe2CN96PdXjeKumwbz7QkaTvqN80bC-3I_cFQ87gxMYbW-4Ypu8h2UhQ_X5y8vxv090Cp29wA-Nd9B1Bg2Tt-D4mzdhCw49N1Rt2jB7RM7CQyztxnPGAwd9GlXh08hWvcgR3hd5uSo3yDPhkafXlmuDnIlHpY5ETsmCBBqPn5FjjYhlB6aDp0l_GNSBDMHCAn0RSJ5pzLHkjLIowyYVKYmZ1kwlnGisMSPSZMa2XNQ2YsKoRCmlOZVUYOm-LefQzFe5uQAUO-s7gRMpOY1JRoSObCUj7MieNMLiEtputuYflefGvJ6oq78PX8MR8TEVjoh4A81iXZpbWywU8s6_JV8z6LbV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BjFE3KmB8OwuXFqadPpilISIoEBaQsCPzakIkYIBu_HrvTHmoceGqnS76mDQ990zPORfgQTDjp4jjntAcCUrKYo_XU-lxrbRSEUKms491e3FrGL6OolEBHrdeGGOME5-Zqt11__L1XGV2qawWRwh-QbgH-xGyiiR3a-1WVHybH7WlW9ZF6VqrICIi3ar7ztYVJyyMsQzfpD2tx-HGT0N5rR10Bw0r-mLV9QV_dF5xwNM8ge7mlnO9yXs1W8mq-vyV5vjfZzqFys7iR_pb8DqDgpmV4PhbOmEJDpw6VC3LMHoiNsRDTHHjVOOeBT9N8vbTBOteYiXvk1k2z5bEaeGJE9hmC0NsjEfujyTWy0IE6fdfiNWNiGkFhs3nQaPlrVsyeBOE-pUneaopp5InLPFTamIRB2GidaIiHmiqaRJIkxokXQypmDAqUkppziQTVNqvyzkUZ_OZuQAS2vA7QSMpOQuDNBDax1pG4AhP6lNxCWU7W-OPPHVjvJ6oq78P38Nha9DtjDvt3ts1HAWuaYWVJd5AcbXIzC2WDit5596YLwYquiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Instrumentation+and+Measurement+Technology+Conference+%28I2MTC%29&rft.atitle=A+Neural+Network-based+method+for+continuous+blood+pressure+estimation+from+a+PPG+signal&rft.au=Kurylyak%2C+Yuriy&rft.au=Lamonaca%2C+Francesco&rft.au=Grimaldi%2C+Domenico&rft.date=2013-05-01&rft.pub=IEEE&rft.isbn=9781467346214&rft.issn=1091-5281&rft.spage=280&rft.epage=283&rft_id=info:doi/10.1109%2FI2MTC.2013.6555424&rft.externalDocID=6555424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-5281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-5281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-5281&client=summon