A Neural Network-based method for continuous blood pressure estimation from a PPG signal
There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the...
Saved in:
Published in | 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) pp. 280 - 283 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2013
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467346214 1467346217 |
ISSN | 1091-5281 |
DOI | 10.1109/I2MTC.2013.6555424 |
Cover
Abstract | There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the Multiparameter Intelligent Monitoring in Intensive Care waveform database for better representation of possible pulse and pressure variation. In total there were analyzed more than 15000 heartbeats and 21 parameters were extracted from each of them that define the input vector for the ANN. The comparison between estimated and reference values shows better accuracy than the linear regression method and satisfy the American National Standards of the Association for the Advancement of Medical Instrumentation. |
---|---|
AbstractList | There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to estimate the blood pressure from the PPG signal, in this paper the Artificial Neural Networks (ANNs) are used. Training data were extracted from the Multiparameter Intelligent Monitoring in Intensive Care waveform database for better representation of possible pulse and pressure variation. In total there were analyzed more than 15000 heartbeats and 21 parameters were extracted from each of them that define the input vector for the ANN. The comparison between estimated and reference values shows better accuracy than the linear regression method and satisfy the American National Standards of the Association for the Advancement of Medical Instrumentation. |
Author | Lamonaca, Francesco Grimaldi, Domenico Kurylyak, Yuriy |
Author_xml | – sequence: 1 givenname: Yuriy surname: Kurylyak fullname: Kurylyak, Yuriy email: kurylyak@deis.unical.it organization: Dept. of Comput. Sci., Modeling, Electron. & Syst. Sci., Univ. of Calabria, Rende, Italy – sequence: 2 givenname: Francesco surname: Lamonaca fullname: Lamonaca, Francesco email: flamonaca@deis.unical.it organization: Dept. of Comput. Sci., Modeling, Electron. & Syst. Sci., Univ. of Calabria, Rende, Italy – sequence: 3 givenname: Domenico surname: Grimaldi fullname: Grimaldi, Domenico email: grimaldi@deis.unical.it organization: Dept. of Comput. Sci., Modeling, Electron. & Syst. Sci., Univ. of Calabria, Rende, Italy |
BookMark | eNo1kNtKAzEYhCNWsK19Ab3JC2z9c24uS9Fa8NCLCt6VZPOvrm43JdlFfHsXrFfDDMzHMBMyamOLhFwzmDMG9nbDn3arOQcm5lopJbk8IxMmtRFScyHOycyaxb9nckTGQ4sVii_YJZnl_AkAA0gLMGPytqTP2CfXDNJ9x_RVeJcx0AN2HzHQKiZaxrar2z72mfomDuExYc59Qoq5qw-uq2NLqxQP1NHtdk1z_d665opcVK7JODvplLze3-1WD8Xjy3qzWj4WNZesK7ytAljw1gjDKkDtNJcmBFMqywMEMNxjhVZpwRfGYanKsgxWeOHAgwExJTd_3BoR98c0DEo_-9Mx4hffwVcU |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/I2MTC.2013.6555424 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISBN | 1467346233 9781467346238 |
EndPage | 283 |
ExternalDocumentID | 6555424 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i241t-b9fd090b97371f0e6a6247dd7c592d0d072befe9563287aec5cccd93b3a0b0703 |
IEDL.DBID | RIE |
ISBN | 9781467346214 1467346217 |
ISSN | 1091-5281 |
IngestDate | Wed Aug 27 04:13:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-b9fd090b97371f0e6a6247dd7c592d0d072befe9563287aec5cccd93b3a0b0703 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6555424 |
PublicationCentury | 2000 |
PublicationDate | 2013-05 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05 |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) |
PublicationTitleAbbrev | I2MTC |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106307 ssj0006477 |
Score | 1.9827707 |
Snippet | There is a relation, not always linear, between the blood pressure and the pulse duration, obtained from photoplethysmography (PPG) signal. In order to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 280 |
SubjectTerms | Artificial neural networks Biomedical monitoring Blood pressure Estimation hypertension Linear regression Monitoring neural networks Neurons photoplethysmography |
Title | A Neural Network-based method for continuous blood pressure estimation from a PPG signal |
URI | https://ieeexplore.ieee.org/document/6555424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CJCZ6UQHjOz14dKNrt5UeDRHRBMMBEm6kryVEMgxsF_96226AGg-etu6wR7Ps933d7wFwL6iJMovjgdDcNigZTQPey2TAtdJKJRYyvXxs9JYOp_HrLJk14GGnhTHGePKZCd2u_5evV6p0S2XdNLHgR-IDOGCMV1qt_XpK5Nyjds2W01D6YBWLh7bZ6kVe1JUyGqe2CN96PdXjeKumwbz7QkaTvqN80bC-3I_cFQ87gxMYbW-4Ypu8h2UhQ_X5y8vxv090Cp29wA-Nd9B1Bg2Tt-D4mzdhCw49N1Rt2jB7RM7CQyztxnPGAwd9GlXh08hWvcgR3hd5uSo3yDPhkafXlmuDnIlHpY5ETsmCBBqPn5FjjYhlB6aDp0l_GNSBDMHCAn0RSJ5pzLHkjLIowyYVKYmZ1kwlnGisMSPSZMa2XNQ2YsKoRCmlOZVUYOm-LefQzFe5uQAUO-s7gRMpOY1JRoSObCUj7MieNMLiEtputuYflefGvJ6oq78PX8MR8TEVjoh4A81iXZpbWywU8s6_JV8z6LbV |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BjFE3KmB8OwuXFqadPpilISIoEBaQsCPzakIkYIBu_HrvTHmoceGqnS76mDQ990zPORfgQTDjp4jjntAcCUrKYo_XU-lxrbRSEUKms491e3FrGL6OolEBHrdeGGOME5-Zqt11__L1XGV2qawWRwh-QbgH-xGyiiR3a-1WVHybH7WlW9ZF6VqrICIi3ar7ztYVJyyMsQzfpD2tx-HGT0N5rR10Bw0r-mLV9QV_dF5xwNM8ge7mlnO9yXs1W8mq-vyV5vjfZzqFys7iR_pb8DqDgpmV4PhbOmEJDpw6VC3LMHoiNsRDTHHjVOOeBT9N8vbTBOteYiXvk1k2z5bEaeGJE9hmC0NsjEfujyTWy0IE6fdfiNWNiGkFhs3nQaPlrVsyeBOE-pUneaopp5InLPFTamIRB2GidaIiHmiqaRJIkxokXQypmDAqUkppziQTVNqvyzkUZ_OZuQAS2vA7QSMpOQuDNBDax1pG4AhP6lNxCWU7W-OPPHVjvJ6oq78P38Nha9DtjDvt3ts1HAWuaYWVJd5AcbXIzC2WDit5596YLwYquiY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Instrumentation+and+Measurement+Technology+Conference+%28I2MTC%29&rft.atitle=A+Neural+Network-based+method+for+continuous+blood+pressure+estimation+from+a+PPG+signal&rft.au=Kurylyak%2C+Yuriy&rft.au=Lamonaca%2C+Francesco&rft.au=Grimaldi%2C+Domenico&rft.date=2013-05-01&rft.pub=IEEE&rft.isbn=9781467346214&rft.issn=1091-5281&rft.spage=280&rft.epage=283&rft_id=info:doi/10.1109%2FI2MTC.2013.6555424&rft.externalDocID=6555424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-5281&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-5281&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-5281&client=summon |