Fusing shallow and deep learning for bioacoustic bird species classification
Automated classification of organisms to species based on their vocalizations would contribute tremendously to abilities to monitor biodiversity, with a wide range of applications in the field of ecology. In particular, automated classification of migrating birds' flight calls could yield new b...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 141 - 145 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-190X |
DOI | 10.1109/ICASSP.2017.7952134 |
Cover
Abstract | Automated classification of organisms to species based on their vocalizations would contribute tremendously to abilities to monitor biodiversity, with a wide range of applications in the field of ecology. In particular, automated classification of migrating birds' flight calls could yield new biological insights and conservation applications for birds that vocalize during migration. In this paper we explore state-of-the-art classification techniques for large-vocabulary bird species classification from flight calls. In particular, we contrast a "shallow learning" approach based on unsupervised dictionary learning with a deep convolutional neural network combined with data augmentation. We show that the two models perform comparably on a dataset of 5428 flight calls spanning 43 different species, with both significantly outperforming an MFCC baseline. Finally, we show that by combining the models using a simple late-fusion approach we can further improve the results, obtaining a state-of-the-art classification accuracy of 0.96. |
---|---|
AbstractList | Automated classification of organisms to species based on their vocalizations would contribute tremendously to abilities to monitor biodiversity, with a wide range of applications in the field of ecology. In particular, automated classification of migrating birds' flight calls could yield new biological insights and conservation applications for birds that vocalize during migration. In this paper we explore state-of-the-art classification techniques for large-vocabulary bird species classification from flight calls. In particular, we contrast a "shallow learning" approach based on unsupervised dictionary learning with a deep convolutional neural network combined with data augmentation. We show that the two models perform comparably on a dataset of 5428 flight calls spanning 43 different species, with both significantly outperforming an MFCC baseline. Finally, we show that by combining the models using a simple late-fusion approach we can further improve the results, obtaining a state-of-the-art classification accuracy of 0.96. |
Author | Kelling, Steve Salamon, Justin Bello, Juan Pablo Farnsworth, Andrew |
Author_xml | – sequence: 1 givenname: Justin surname: Salamon fullname: Salamon, Justin email: justin.salamon@nyu.edu organization: Music & Audio Res. Lab., New York Univ., New York, NY, USA – sequence: 2 givenname: Juan Pablo surname: Bello fullname: Bello, Juan Pablo organization: Music & Audio Res. Lab., New York Univ., New York, NY, USA – sequence: 3 givenname: Andrew surname: Farnsworth fullname: Farnsworth, Andrew organization: Cornell Lab. of Ornithology, Cornell Univ., Ithaca, NY, USA – sequence: 4 givenname: Steve surname: Kelling fullname: Kelling, Steve organization: Cornell Lab. of Ornithology, Cornell Univ., Ithaca, NY, USA |
BookMark | eNotj11LwzAYhaMouE5_wW7yB1rz5qNpLmU4JxQUpuDdSJM3GqlNaTbEf2_FXZ0DBx6eU5CLIQ1IyApYBcDM7eP6brd7rjgDXWmjOAh5RgpQzDAJoOtzsuBCmxIMe7siRc6fjLFGy2ZB2s0xx-Gd5g_b9-mb2sFTjzjSHu00_C0hTbSLybp0zIfo5j55mkd0ETN1vc05hujsIabhmlwG22e8OeWSvG7uX9bbsn16mB3bMnIJh9IaL3itGwBUoDqhQnA1x65rrPMeHejZ1nkUKFVQwbgGJRNWMcu1guDEkqz-uRER9-MUv-z0sz89F7911lDr |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP.2017.7952134 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1509041176 9781509041176 |
EISSN | 2379-190X |
EndPage | 145 |
ExternalDocumentID | 7952134 |
Genre | orig-research |
GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-a9d3267811e515b35ffc62ebb8acddec17237cde3e45f5f9c8e403a50a2751fc3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:15:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-a9d3267811e515b35ffc62ebb8acddec17237cde3e45f5f9c8e403a50a2751fc3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7952134 |
PublicationCentury | 2000 |
PublicationDate | 2017-03 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.3082383 |
Snippet | Automated classification of organisms to species based on their vocalizations would contribute tremendously to abilities to monitor biodiversity, with a wide... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 141 |
SubjectTerms | bioacoustics Birds Convolutional codes Convolutional neural networks data augmentation deep learning Dictionaries flight calls Machine learning Mel frequency cepstral coefficient Monitoring Neural networks |
Title | Fusing shallow and deep learning for bioacoustic bird species classification |
URI | https://ieeexplore.ieee.org/document/7952134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja8JAFH6op_bSRUt35tBjE2PWybFIxZZaBCt4k1neiBQS0Uihv75vktQu9NDbMDDJMG94S_J93wO4EXQHDHLhSCqWnZDL1BG-8R1yfdqPOcapsHzn0XM8nIaPs2jWgNsdFwYRS_AZunZY_svXudraT2XdJI2sAFkTmnTNKq7WzuvyJOS1qlDPS7sP_bvJZGyhW4lbL_vRP6UMH4MDGH2-uEKNvLrbQrrq_Zcm4393dgidL6IeG-9C0BE0MDuG_W8ag214Glho-4JtbNeU_I2JTDONuGJ1v4gFo7SVyWVOrrHs7EXjtWaWgUlFNFM2u7ZwotKCHZgO7l_6Q6duoeAsKTQXjkg15WeWTYqUuMggMkbFPkrJhSLHpih9CRKlMcAwMpFJFcfQC0TkCT-JekYFJ9DK8gxPgdHzqHbjoUgp6ic6EFKSd6CFmntGBHgGbXsu81WlkjGvj-T87-kL2LO2qdBcl9Aq1lu8ovBeyOvSrh-eeaaq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja8JAFB6sPbS9dNHSvXPosYmaZJLJsUhFWxVBBW8yyxuRQiI2Uuiv75sktQs99DYMTDLMG96SfN_7CLkTeAcMcOFILJadgMvYEZ7xHHR92gs5hLGwfOfBMOxOg6cZm1XI_ZYLAwA5-AxcO8z_5etUbeynskYUM9uAbIfsMqwqeMHW2vpdHgW87CvUasaNXvthPB5Z8Fbklgt_KKjkAaRzSAafry5wIy_uJpOuev_VlfG_ezsi9S-qHh1tg9AxqUByQg6-dRmskX7HgtsX9NXqpqRvVCSaaoAVLRUjFhQTVyqXKTrHXNsLx2tNLQcTy2iqbH5tAUW5Detk2nmctLtOKaLgLDE4Z46INWZolk8KmLpInxmjQg-k5EKha1OYwPiR0uBDwAwzseIQNH3BmsKLWMso_5RUkzSBM0LxeVi98UDEGPcj7Qsp0T_gQs2bRvhwTmr2XOarok_GvDySi7-nb8ledzLoz_u94fMl2bd2KrBdV6SarTdwjcE-kze5jT8Akrmp_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Fusing+shallow+and+deep+learning+for+bioacoustic+bird+species+classification&rft.au=Salamon%2C+Justin&rft.au=Bello%2C+Juan+Pablo&rft.au=Farnsworth%2C+Andrew&rft.au=Kelling%2C+Steve&rft.date=2017-03-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=141&rft.epage=145&rft_id=info:doi/10.1109%2FICASSP.2017.7952134&rft.externalDocID=7952134 |