Geometric distortion metrics for point cloud compression
It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are measured in terms of point-to-point or point-to-surface distances, that either ignores the surface structures or heavily tends to rely on spe...
        Saved in:
      
    
          | Published in | 2017 IEEE International Conference on Image Processing (ICIP) pp. 3460 - 3464 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.09.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2381-8549 | 
| DOI | 10.1109/ICIP.2017.8296925 | 
Cover
| Abstract | It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are measured in terms of point-to-point or point-to-surface distances, that either ignores the surface structures or heavily tends to rely on specific surface reconstructions. To overcome these drawbacks, we propose using point-to-plane distances as a measure of geometric distortions on point cloud compression. The intrinsic resolution of the point clouds is proposed as a normalizer to convert the mean square errors to PSNR numbers. In addition, the perceived local planes are investigated at different scales of the point cloud. Finally, the proposed metric is independent of the size of the point cloud and rather reveals the geometric fidelity of the point cloud. From experiments, we demonstrate that our method could better track the perceived quality than the point-to-point approach while requires limited computations. | 
    
|---|---|
| AbstractList | It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are measured in terms of point-to-point or point-to-surface distances, that either ignores the surface structures or heavily tends to rely on specific surface reconstructions. To overcome these drawbacks, we propose using point-to-plane distances as a measure of geometric distortions on point cloud compression. The intrinsic resolution of the point clouds is proposed as a normalizer to convert the mean square errors to PSNR numbers. In addition, the perceived local planes are investigated at different scales of the point cloud. Finally, the proposed metric is independent of the size of the point cloud and rather reveals the geometric fidelity of the point cloud. From experiments, we demonstrate that our method could better track the perceived quality than the point-to-point approach while requires limited computations. | 
    
| Author | Tian, Dong Feng, Chen Vetro, Anthony Cohen, Robert Ochimizu, Hideaki  | 
    
| Author_xml | – sequence: 1 givenname: Dong surname: Tian fullname: Tian, Dong organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA – sequence: 2 givenname: Hideaki surname: Ochimizu fullname: Ochimizu, Hideaki organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA – sequence: 3 givenname: Chen surname: Feng fullname: Feng, Chen organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA – sequence: 4 givenname: Robert surname: Cohen fullname: Cohen, Robert organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA – sequence: 5 givenname: Anthony surname: Vetro fullname: Vetro, Anthony organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA  | 
    
| BookMark | eNotj81KAzEUhaMo2NY-gLjJC8yYm7_JXcqg7UBBF7ou83MDkc5kSMaFb2-hXR04fHycs2Z3U5yIsScQJYDAl6ZuPkspoCqdRIvS3LAtVg6MQCGhMu6WraRyUDij8YGtc_4R4swrWDG3ozjSkkLPh5CXmJYQJ35pMvcx8TmGaeH9Kf4OvI_jnCjnM_PI7n17yrS95oZ9v7991fvi8LFr6tdDEaSGpUAvOqOUMtp37XmeAI_eVsp5pQfCtpWaQHrby15a7LzuPKDtaLCk9eCU2rDnizcQ0XFOYWzT3_F6VP0DgedJUA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/ICIP.2017.8296925 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISBN | 9781509021758 1509021752  | 
    
| EISSN | 2381-8549 | 
    
| EndPage | 3464 | 
    
| ExternalDocumentID | 8296925 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS  | 
    
| ID | FETCH-LOGICAL-i241t-9f0b533354fba82901f9f6738f34de9aa24e12f6c2c269bf4bf196bed6e44d833 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:52:33 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i241t-9f0b533354fba82901f9f6738f34de9aa24e12f6c2c269bf4bf196bed6e44d833 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_8296925 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-09 | 
    
| PublicationDateYYYYMMDD | 2017-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2017 IEEE International Conference on Image Processing (ICIP) | 
    
| PublicationTitleAbbrev | ICIP | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0020131 ssj0002269320  | 
    
| Score | 2.5140722 | 
    
| Snippet | It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 3460 | 
    
| SubjectTerms | 3D point cloud Cloud computing Distortion Distortion measurement Measurement uncertainty point-to-plane distortion point-to-point distortion quality measurements Rocks Three-dimensional displays  | 
    
| Title | Geometric distortion metrics for point cloud compression | 
    
| URI | https://ieeexplore.ieee.org/document/8296925 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLW2nTgN2BDfyoEj7dY2TZPzxNiQhnZg0m5TkzjSBLQTay_79SRtKQJx4BblEFm2LD_HzzbAXaCQGYnWvylDzyJi5XGV2FSFY6zSNMRAu37nxTObrejTOl534L7thUHEinyGvjtWtXydq9J9lY14KJgI4y50E87qXq32P8XCCAtFxm2y5ebINFXMYCxG88l86Yhcid888mObShVMpn1YfIlRc0he_bKQvjr8mtD4XzmPYfjdtkeWbUA6gQ5mp9BvcCZpvHg_AP6I-bvbpKWIrqaEOOOQ-mZPLIolu3ybFUS95aUmjnRek2WzIaymDy-TmddsUPC2NjIXnjBjafFcFFMj06pkaoRxez5NRDUKawuKQWiYCpVVnzRUGuuREjVDSjWPojPoZXmG50Ck9X3G0iBlsaA6SbnQgqEr68VJYPOaCxg4RWx29ZCMTaODy7-vr-DIGaMma11Dr_go8cZG90LeVmb9BEEUo74 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLXGOMBpwIb4JgeOdFvbNG3OE2ODbdphk3abmsSRJqCdWHvh15O0pQjEgVuUQ2TZsvwcP9sAd65EpgUa_6YMHYOIpRPJ0KQqEQYyjj10le13ns7YaEmfVsGqAfd1LwwiFuQz7NpjUctXqcztV1kv8jjjXrAH-wGlNCi7teofFQMkDBjp1-mWnSRT1THdPu-NB-O5pXKF3eqZH_tUinAybMH0S5CSRfLSzTPRlR-_ZjT-V9Ij6Hw37pF5HZKOoYHJCbQqpEkqP961IXrE9M3u0pJEFXNCrHlIebMjBseSbbpJMiJf01wRSzsv6bJJB5bDh8Vg5FQ7FJyNic2Zw3VfGETnB1SLuCiaaq7tpk_tU4XcWIOi62kmPWnUJzQV2vikQMWQUhX5_ik0kzTBMyDCeD9jsRuzgFMVxhFXnKEt7AWhazKbc2hbRay35ZiMdaWDi7-vb-FgtJhO1pPx7PkSDq1hSurWFTSz9xyvTazPxE1h4k8HN6cL | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Geometric+distortion+metrics+for+point+cloud+compression&rft.au=Tian%2C+Dong&rft.au=Ochimizu%2C+Hideaki&rft.au=Feng%2C+Chen&rft.au=Cohen%2C+Robert&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3460&rft.epage=3464&rft_id=info:doi/10.1109%2FICIP.2017.8296925&rft.externalDocID=8296925 |