Geometric distortion metrics for point cloud compression

It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are measured in terms of point-to-point or point-to-surface distances, that either ignores the surface structures or heavily tends to rely on spe...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Image Processing (ICIP) pp. 3460 - 3464
Main Authors Tian, Dong, Ochimizu, Hideaki, Feng, Chen, Cohen, Robert, Vetro, Anthony
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2017.8296925

Cover

Abstract It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are measured in terms of point-to-point or point-to-surface distances, that either ignores the surface structures or heavily tends to rely on specific surface reconstructions. To overcome these drawbacks, we propose using point-to-plane distances as a measure of geometric distortions on point cloud compression. The intrinsic resolution of the point clouds is proposed as a normalizer to convert the mean square errors to PSNR numbers. In addition, the perceived local planes are investigated at different scales of the point cloud. Finally, the proposed metric is independent of the size of the point cloud and rather reveals the geometric fidelity of the point cloud. From experiments, we demonstrate that our method could better track the perceived quality than the point-to-point approach while requires limited computations.
AbstractList It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are measured in terms of point-to-point or point-to-surface distances, that either ignores the surface structures or heavily tends to rely on specific surface reconstructions. To overcome these drawbacks, we propose using point-to-plane distances as a measure of geometric distortions on point cloud compression. The intrinsic resolution of the point clouds is proposed as a normalizer to convert the mean square errors to PSNR numbers. In addition, the perceived local planes are investigated at different scales of the point cloud. Finally, the proposed metric is independent of the size of the point cloud and rather reveals the geometric fidelity of the point cloud. From experiments, we demonstrate that our method could better track the perceived quality than the point-to-point approach while requires limited computations.
Author Tian, Dong
Feng, Chen
Vetro, Anthony
Cohen, Robert
Ochimizu, Hideaki
Author_xml – sequence: 1
  givenname: Dong
  surname: Tian
  fullname: Tian, Dong
  organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Hideaki
  surname: Ochimizu
  fullname: Ochimizu, Hideaki
  organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Chen
  surname: Feng
  fullname: Feng, Chen
  organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
– sequence: 4
  givenname: Robert
  surname: Cohen
  fullname: Cohen, Robert
  organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
– sequence: 5
  givenname: Anthony
  surname: Vetro
  fullname: Vetro, Anthony
  organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
BookMark eNotj81KAzEUhaMo2NY-gLjJC8yYm7_JXcqg7UBBF7ou83MDkc5kSMaFb2-hXR04fHycs2Z3U5yIsScQJYDAl6ZuPkspoCqdRIvS3LAtVg6MQCGhMu6WraRyUDij8YGtc_4R4swrWDG3ozjSkkLPh5CXmJYQJ35pMvcx8TmGaeH9Kf4OvI_jnCjnM_PI7n17yrS95oZ9v7991fvi8LFr6tdDEaSGpUAvOqOUMtp37XmeAI_eVsp5pQfCtpWaQHrby15a7LzuPKDtaLCk9eCU2rDnizcQ0XFOYWzT3_F6VP0DgedJUA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8296925
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 3464
ExternalDocumentID 8296925
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-9f0b533354fba82901f9f6738f34de9aa24e12f6c2c269bf4bf196bed6e44d833
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-9f0b533354fba82901f9f6738f34de9aa24e12f6c2c269bf4bf196bed6e44d833
PageCount 5
ParticipantIDs ieee_primary_8296925
PublicationCentury 2000
PublicationDate 2017-09
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.5140722
Snippet It is challenging to measure the geometry distortion of point cloud introduced by point cloud compression. Conventionally, the errors between point clouds are...
SourceID ieee
SourceType Publisher
StartPage 3460
SubjectTerms 3D point cloud
Cloud computing
Distortion
Distortion measurement
Measurement uncertainty
point-to-plane distortion
point-to-point distortion
quality measurements
Rocks
Three-dimensional displays
Title Geometric distortion metrics for point cloud compression
URI https://ieeexplore.ieee.org/document/8296925
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLW2nTgN2BDfyoEj7dY2TZPzxNiQhnZg0m5TkzjSBLQTay_79SRtKQJx4BblEFm2LD_HzzbAXaCQGYnWvylDzyJi5XGV2FSFY6zSNMRAu37nxTObrejTOl534L7thUHEinyGvjtWtXydq9J9lY14KJgI4y50E87qXq32P8XCCAtFxm2y5ebINFXMYCxG88l86Yhcid888mObShVMpn1YfIlRc0he_bKQvjr8mtD4XzmPYfjdtkeWbUA6gQ5mp9BvcCZpvHg_AP6I-bvbpKWIrqaEOOOQ-mZPLIolu3ybFUS95aUmjnRek2WzIaymDy-TmddsUPC2NjIXnjBjafFcFFMj06pkaoRxez5NRDUKawuKQWiYCpVVnzRUGuuREjVDSjWPojPoZXmG50Ck9X3G0iBlsaA6SbnQgqEr68VJYPOaCxg4RWx29ZCMTaODy7-vr-DIGaMma11Dr_go8cZG90LeVmb9BEEUo74
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLXGOMBpwIb4JgeOdFvbNG3OE2ODbdphk3abmsSRJqCdWHvh15O0pQjEgVuUQ2TZsvwcP9sAd65EpgUa_6YMHYOIpRPJ0KQqEQYyjj10le13ns7YaEmfVsGqAfd1LwwiFuQz7NpjUctXqcztV1kv8jjjXrAH-wGlNCi7teofFQMkDBjp1-mWnSRT1THdPu-NB-O5pXKF3eqZH_tUinAybMH0S5CSRfLSzTPRlR-_ZjT-V9Ij6Hw37pF5HZKOoYHJCbQqpEkqP961IXrE9M3u0pJEFXNCrHlIebMjBseSbbpJMiJf01wRSzsv6bJJB5bDh8Vg5FQ7FJyNic2Zw3VfGETnB1SLuCiaaq7tpk_tU4XcWIOi62kmPWnUJzQV2vikQMWQUhX5_ik0kzTBMyDCeD9jsRuzgFMVxhFXnKEt7AWhazKbc2hbRay35ZiMdaWDi7-vb-FgtJhO1pPx7PkSDq1hSurWFTSz9xyvTazPxE1h4k8HN6cL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Geometric+distortion+metrics+for+point+cloud+compression&rft.au=Tian%2C+Dong&rft.au=Ochimizu%2C+Hideaki&rft.au=Feng%2C+Chen&rft.au=Cohen%2C+Robert&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3460&rft.epage=3464&rft_id=info:doi/10.1109%2FICIP.2017.8296925&rft.externalDocID=8296925