Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach
In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero tem...
        Saved in:
      
    
          | Published in | IEEE INFOCOM 2017 - IEEE Conference on Computer Communications pp. 1 - 9 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.05.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/INFOCOM.2017.8057090 | 
Cover
| Abstract | In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero temporal autocorrelation and non-zero spatial correlation among neighboring Base Stations (BSs), which motivate us to discover both temporal and spatial dependencies in our study. Then we present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Moreover, we present a new algorithm for training the proposed spatial model. We conducted extensive experiments to evaluate the performance of the proposed model using the China Mobile dataset. The results show that the proposed deep model significantly improves prediction accuracy compared to two commonly used baseline methods, ARIMA and SVR. We also present some results to justify effectiveness of the autoencoder-based spatial model. | 
    
|---|---|
| AbstractList | In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero temporal autocorrelation and non-zero spatial correlation among neighboring Base Stations (BSs), which motivate us to discover both temporal and spatial dependencies in our study. Then we present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Moreover, we present a new algorithm for training the proposed spatial model. We conducted extensive experiments to evaluate the performance of the proposed model using the China Mobile dataset. The results show that the proposed deep model significantly improves prediction accuracy compared to two commonly used baseline methods, ARIMA and SVR. We also present some results to justify effectiveness of the autoencoder-based spatial model. | 
    
| Author | Yanzhi Wang Jian Tang Zhiyuan Xu Xing Zhang Dejun Yang Jing Wang Guoliang Xue  | 
    
| Author_xml | – sequence: 1 surname: Jing Wang fullname: Jing Wang organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 2 surname: Jian Tang fullname: Jian Tang organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 3 surname: Zhiyuan Xu fullname: Zhiyuan Xu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 4 surname: Yanzhi Wang fullname: Yanzhi Wang organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 5 surname: Guoliang Xue fullname: Guoliang Xue organization: Ira A. Fulton Schools of Eng., Arizona State Univ., Tempe, AZ, USA – sequence: 6 surname: Xing Zhang fullname: Xing Zhang organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China – sequence: 7 surname: Dejun Yang fullname: Dejun Yang organization: Dept. of Electr. Eng. & Comput. Sci., Colorado Sch. of Mines, Golden, CO, USA  | 
    
| BookMark | eNotj0FOwzAURI0ECyg9ASx8gQQ7rhOHXRVRqFTIAlhX3_ZPsXBsyw1C3J4IuponjfQ0c0XOQwxIyC1nJeesvdu-bPqufy4rxptSMdmwlp2RZdsoLmeUQtTskgyvCSYXJxxTzODpGC16Fw4UgqUpo3VmrgN1gRr0_stDpgGn75g_j_d0TbU7UAsTUAygPVpqERP1CDn8WVLKEczHNbkYwB9xecoFed88vHVPxa5_3HbrXeGqFZ-KukWt9DzPcs2l4NyAaoxSQoGUK2NFPdSNBmDSDkYqa5TVvKqEqGoFrRViQW7-vQ4R9ym7EfLP_vRe_AKgmlWu | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/INFOCOM.2017.8057090 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781509053360 1509053360  | 
    
| EndPage | 9 | 
    
| ExternalDocumentID | 8057090 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IH CBEJK RIE RIO  | 
    
| ID | FETCH-LOGICAL-i241t-69eb8b509d1b15311ca87c8838a554cd36f67baa05dfc58dc8db12233268a9d33 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:37:10 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i241t-69eb8b509d1b15311ca87c8838a554cd36f67baa05dfc58dc8db12233268a9d33 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | ieee_primary_8057090 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-05 | 
    
| PublicationDateYYYYMMDD | 2017-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | IEEE INFOCOM 2017 - IEEE Conference on Computer Communications | 
    
| PublicationTitleAbbrev | INFOCOM | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 2.5025458 | 
    
| Snippet | In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Autoencoder Big Data Cellular Network Correlation Data models Deep Learning Load modeling Machine learning Mobile communication Predictive models Recurrent Neural Network Spatiotemporal Modeling Spatiotemporal phenomena  | 
    
| Title | Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach | 
    
| URI | https://ieeexplore.ieee.org/document/8057090 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh7dbXa32WS9SbGo0FbQQm8lk0ykKNtStxd_vUl2rSgevIUkJCEDmZfkvRlCLjUwYZWFiGl3RenzFCKZWBVpFGAym1tuvDh5NM7vpv2HGZ-1yNVWC4OIgXyGsS-Gv3yz1Bv_VNaTDlywwl3Qd4TMa61Wo4ZLWNG7Hw8ng8nI07VE3HT9kTMluIzhHhl9TVYzRV7jTQWx_vgVh_G_q9kn3W9xHn3cup0D0sKyQ-xTYEY3gabeaEhw45qpKg1drf1vjLcAXZTUP9V77iktawb4-zW9obB4oZ4sSjFoqQw1iCvapJRwozSRx7tkOrx9HtxFTQqFaOFccxXlBYIEBwpMAu5sSxKtpNBSZlI5HKFNlttcgFKMG6u5NFoaSBxicKBOqsJk2SFpl8sSjwi1wEEVXGrMRR-zVIEDWxyYYgrTVOAx6fg9mq_qKBnzZntO_q4-JbveTjV18Iy0q_UGz517r-Ai2PUTbJqqGQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvSk0orf5uDR3e5XdrPepFha7baCLfRWMslEirItdXvx15vsrhXFg7eQhCRkIPOSvDdDyLUEL9FCg-NJc0WJWAAO97VwJCagQh1rpqw4ORvF_Wn0MGOzBrnZamEQsSSfoWuL5V--WsqNfSrrcAMuvNRc0HdYFEWsUmvVejjfSzuDUW_cHWeWsJW4decfWVNKp9HbJ9nXdBVX5NXdFODKj1-RGP-7ngPS_pbn0aet4zkkDcxbRD-X3Og61NQbLVPcmGYqckVXa_sfY21AFzm1j_WWfUrzigP-fkvvKCxeqKWLUizVVIoqxBWtk0qYUerY420y7d1Pun2nTqLgLIxzLpw4ReBgYIHywZxuvi8FTyTnIRcGSUgVxjpOQAiPKS0ZV5Ir8A1mMLCOi1SF4RFp5sscjwnVwECkjEuMkwjDQICBWww84QkMggRPSMvu0XxVxcmY19tz-nf1FdntT7LhfDgYPZ6RPWuzikh4TprFeoMXxtkXcFna-BOAmK1m | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+INFOCOM+2017+-+IEEE+Conference+on+Computer+Communications&rft.atitle=Spatiotemporal+modeling+and+prediction+in+cellular+networks%3A+A+big+data+enabled+deep+learning+approach&rft.au=Jing+Wang&rft.au=Jian+Tang&rft.au=Zhiyuan+Xu&rft.au=Yanzhi+Wang&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FINFOCOM.2017.8057090&rft.externalDocID=8057090 |