Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach

In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero tem...

Full description

Saved in:
Bibliographic Details
Published inIEEE INFOCOM 2017 - IEEE Conference on Computer Communications pp. 1 - 9
Main Authors Jing Wang, Jian Tang, Zhiyuan Xu, Yanzhi Wang, Guoliang Xue, Xing Zhang, Dejun Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2017
Subjects
Online AccessGet full text
DOI10.1109/INFOCOM.2017.8057090

Cover

Abstract In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero temporal autocorrelation and non-zero spatial correlation among neighboring Base Stations (BSs), which motivate us to discover both temporal and spatial dependencies in our study. Then we present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Moreover, we present a new algorithm for training the proposed spatial model. We conducted extensive experiments to evaluate the performance of the proposed model using the China Mobile dataset. The results show that the proposed deep model significantly improves prediction accuracy compared to two commonly used baseline methods, ARIMA and SVR. We also present some results to justify effectiveness of the autoencoder-based spatial model.
AbstractList In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero temporal autocorrelation and non-zero spatial correlation among neighboring Base Stations (BSs), which motivate us to discover both temporal and spatial dependencies in our study. Then we present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Moreover, we present a new algorithm for training the proposed spatial model. We conducted extensive experiments to evaluate the performance of the proposed model using the China Mobile dataset. The results show that the proposed deep model significantly improves prediction accuracy compared to two commonly used baseline methods, ARIMA and SVR. We also present some results to justify effectiveness of the autoencoder-based spatial model.
Author Yanzhi Wang
Jian Tang
Zhiyuan Xu
Xing Zhang
Dejun Yang
Jing Wang
Guoliang Xue
Author_xml – sequence: 1
  surname: Jing Wang
  fullname: Jing Wang
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 2
  surname: Jian Tang
  fullname: Jian Tang
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 3
  surname: Zhiyuan Xu
  fullname: Zhiyuan Xu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 4
  surname: Yanzhi Wang
  fullname: Yanzhi Wang
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 5
  surname: Guoliang Xue
  fullname: Guoliang Xue
  organization: Ira A. Fulton Schools of Eng., Arizona State Univ., Tempe, AZ, USA
– sequence: 6
  surname: Xing Zhang
  fullname: Xing Zhang
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 7
  surname: Dejun Yang
  fullname: Dejun Yang
  organization: Dept. of Electr. Eng. & Comput. Sci., Colorado Sch. of Mines, Golden, CO, USA
BookMark eNotj0FOwzAURI0ECyg9ASx8gQQ7rhOHXRVRqFTIAlhX3_ZPsXBsyw1C3J4IuponjfQ0c0XOQwxIyC1nJeesvdu-bPqufy4rxptSMdmwlp2RZdsoLmeUQtTskgyvCSYXJxxTzODpGC16Fw4UgqUpo3VmrgN1gRr0_stDpgGn75g_j_d0TbU7UAsTUAygPVpqERP1CDn8WVLKEczHNbkYwB9xecoFed88vHVPxa5_3HbrXeGqFZ-KukWt9DzPcs2l4NyAaoxSQoGUK2NFPdSNBmDSDkYqa5TVvKqEqGoFrRViQW7-vQ4R9ym7EfLP_vRe_AKgmlWu
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/INFOCOM.2017.8057090
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509053360
1509053360
EndPage 9
ExternalDocumentID 8057090
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i241t-69eb8b509d1b15311ca87c8838a554cd36f67baa05dfc58dc8db12233268a9d33
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:10 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-69eb8b509d1b15311ca87c8838a554cd36f67baa05dfc58dc8db12233268a9d33
PageCount 9
ParticipantIDs ieee_primary_8057090
PublicationCentury 2000
PublicationDate 2017-05
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05
PublicationDecade 2010
PublicationTitle IEEE INFOCOM 2017 - IEEE Conference on Computer Communications
PublicationTitleAbbrev INFOCOM
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.5025458
Snippet In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autoencoder
Big Data
Cellular Network
Correlation
Data models
Deep Learning
Load modeling
Machine learning
Mobile communication
Predictive models
Recurrent Neural Network
Spatiotemporal Modeling
Spatiotemporal phenomena
Title Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach
URI https://ieeexplore.ieee.org/document/8057090
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh7dbXa32WS9SbGo0FbQQm8lk0ykKNtStxd_vUl2rSgevIUkJCEDmZfkvRlCLjUwYZWFiGl3RenzFCKZWBVpFGAym1tuvDh5NM7vpv2HGZ-1yNVWC4OIgXyGsS-Gv3yz1Bv_VNaTDlywwl3Qd4TMa61Wo4ZLWNG7Hw8ng8nI07VE3HT9kTMluIzhHhl9TVYzRV7jTQWx_vgVh_G_q9kn3W9xHn3cup0D0sKyQ-xTYEY3gabeaEhw45qpKg1drf1vjLcAXZTUP9V77iktawb4-zW9obB4oZ4sSjFoqQw1iCvapJRwozSRx7tkOrx9HtxFTQqFaOFccxXlBYIEBwpMAu5sSxKtpNBSZlI5HKFNlttcgFKMG6u5NFoaSBxicKBOqsJk2SFpl8sSjwi1wEEVXGrMRR-zVIEDWxyYYgrTVOAx6fg9mq_qKBnzZntO_q4-JbveTjV18Iy0q_UGz517r-Ai2PUTbJqqGQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvSk0orf5uDR3e5XdrPepFha7baCLfRWMslEirItdXvx15vsrhXFg7eQhCRkIPOSvDdDyLUEL9FCg-NJc0WJWAAO97VwJCagQh1rpqw4ORvF_Wn0MGOzBrnZamEQsSSfoWuL5V--WsqNfSrrcAMuvNRc0HdYFEWsUmvVejjfSzuDUW_cHWeWsJW4decfWVNKp9HbJ9nXdBVX5NXdFODKj1-RGP-7ngPS_pbn0aet4zkkDcxbRD-X3Og61NQbLVPcmGYqckVXa_sfY21AFzm1j_WWfUrzigP-fkvvKCxeqKWLUizVVIoqxBWtk0qYUerY420y7d1Pun2nTqLgLIxzLpw4ReBgYIHywZxuvi8FTyTnIRcGSUgVxjpOQAiPKS0ZV5Ir8A1mMLCOi1SF4RFp5sscjwnVwECkjEuMkwjDQICBWww84QkMggRPSMvu0XxVxcmY19tz-nf1FdntT7LhfDgYPZ6RPWuzikh4TprFeoMXxtkXcFna-BOAmK1m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+INFOCOM+2017+-+IEEE+Conference+on+Computer+Communications&rft.atitle=Spatiotemporal+modeling+and+prediction+in+cellular+networks%3A+A+big+data+enabled+deep+learning+approach&rft.au=Jing+Wang&rft.au=Jian+Tang&rft.au=Zhiyuan+Xu&rft.au=Yanzhi+Wang&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FINFOCOM.2017.8057090&rft.externalDocID=8057090