Multi-scale Location-Aware Kernel Representation for Object Detection

Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into d...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 1248 - 1257
Main Authors Wang, Hao, Wang, Qilong, Gao, Mingqi, Li, Peihua, Zuo, Wangmeng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00136

Cover

Abstract Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation. Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0% (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: https://github.com/Hwang64/MLKP.
AbstractList Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation. Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0% (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: https://github.com/Hwang64/MLKP.
Author Zuo, Wangmeng
Wang, Qilong
Wang, Hao
Gao, Mingqi
Li, Peihua
Author_xml – sequence: 1
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 2
  givenname: Qilong
  surname: Wang
  fullname: Wang, Qilong
– sequence: 3
  givenname: Mingqi
  surname: Gao
  fullname: Gao, Mingqi
– sequence: 4
  givenname: Peihua
  surname: Li
  fullname: Li, Peihua
– sequence: 5
  givenname: Wangmeng
  surname: Zuo
  fullname: Zuo, Wangmeng
BookMark eNotj81Kw0AURkdRsNasXbiZF5g4d_5nWWqrYqRS1G2ZTG8gJSZlMiK-vUFdHfgOHPguyVk_9EjINfASgPvb5fvLthQcXMk5SHNCCm8daOmMUYL7UzIDbiQzHvwFKcbxwDkXxkmn9Iysnj-73LIxhg5pNcSQ26Fni6-QkD5h6rGjWzwmHLHPv442Q6Kb-oAx0zvME6bxipw3oRux-OecvK1Xr8sHVm3uH5eLirVCQWZagQhG6r3TxjahxqiDni40SjuL9d6oyUHtuRJRSx2tjdY3aEUdIygX5Jzc_HVbRNwdU_sR0vfOaeuEVPIHmpFNHw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00136
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 1257
ExternalDocumentID 8578234
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-5412a635d8567fabec5a5109f4587ebd6435d1b9042c535c77c79fe72bcc148a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-5412a635d8567fabec5a5109f4587ebd6435d1b9042c535c77c79fe72bcc148a3
PageCount 10
ParticipantIDs ieee_primary_8578234
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.385839
Snippet Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object...
SourceID ieee
SourceType Publisher
StartPage 1248
SubjectTerms Benchmark testing
Computer vision
Convolution
Feature extraction
Kernel
Object detection
Proposals
Title Multi-scale Location-Aware Kernel Representation for Object Detection
URI https://ieeexplore.ieee.org/document/8578234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjy6QD-2uz0ahBA_CRHDjXR3h8RoCoESE3-9O22txnjw1vbQbPZlO2-mb94AXGjtaLIJNPek6fHQKs1dFIy5ToyHgQrJxI3UFg_RaBrezMSsBpdVLwwi5uIz7NBl_i_fLs2WSmVdRd7rQViHulRR0atV1VP8SNGrq_vAZTZRrEo3H68Xd_vP4wlpuUg86ZEl849xKnk0GTbh_msdhYjktbPNdMd8_LJo_O9Cd6H93bfHxlVE2oMapvvQLIkmK4_xpgWDvO2Wbxw-yO6WRdWOX70na2S3uE7xjU1yhWzZmJQyR23Zo6aaDbvGLJdvpW2YDgdP_REv5ynwFxenMy5Cz08cwbBKRHKROPRE4rCIF6FQErV15ERYT8fuHBsRCCOlkfECpa-NcVlTEhxAI12meAjMt77LbSP3NbBEAXoJEqihpWns2jfeEbRoV-arwjJjXm7I8d-PT2CHcCkUWKfQyNZbPHOxPtPnOcifl_CmiA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECsZv9-DRBdru9uNoEILyISFgvJHu7pAYTTFQYuKvd7ataIwHb20PzWZftvNm-uYNwJVSRJO1p7gT6CYXJlScomDEVawd9EJhTdys2mLod6fi_kk-leB60wuDiJn4DOv2MvuXbxZ6bUtljdB6r3tiC7alEELm3Vqbiorrh_blm3uPchs_Cgs_H6cZNVqPo7FVc1n5pGNNmX8MVMniSacCg6-V5DKSl_o6VXX98cuk8b9L3YPad-ceG21i0j6UMDmASkE1WXGQV1VoZ423fEUIIesv8rodv3mPl8h6uEzwlY0zjWzRmpQwIrfsQdmqDbvFNBNwJTWYdtqTVpcXExX4M0XqlEvhuDFRDBNKP5jHhJ-MCY1oLmQYoDJET6RxVEQnWUtP6iDQQTTHwFVaU94Ue4dQThYJHgFzjUvZrU_fA2NJQDNGC6swdh67crVzDFW7K7O33DRjVmzIyd-PL2GnOxn0Z_27Ye8Udi1GuR7rDMrpco3nFPlTdZEB_gmDd6nV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Multi-scale+Location-Aware+Kernel+Representation+for+Object+Detection&rft.au=Wang%2C+Hao&rft.au=Wang%2C+Qilong&rft.au=Gao%2C+Mingqi&rft.au=Li%2C+Peihua&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1248&rft.epage=1257&rft_id=info:doi/10.1109%2FCVPR.2018.00136&rft.externalDocID=8578234