Learning Discriminative Appearance-Based Models Using Partial Least Squares

Appearance information is essential for applications such as tracking and people recognition. One of the main problems of using appearance-based discriminative models is the ambiguities among classes when the number of persons being considered increases. To reduce the amount of ambiguity, we propose...

Full description

Saved in:
Bibliographic Details
Published in2009 XXII Brazilian Symposium on Computer Graphics and Image Processing pp. 322 - 329
Main Authors Schwartz, W.R., Davis, L.S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2009
Subjects
Online AccessGet full text
ISBN1424449782
9781424449781
ISSN1530-1834
DOI10.1109/SIBGRAPI.2009.42

Cover

Abstract Appearance information is essential for applications such as tracking and people recognition. One of the main problems of using appearance-based discriminative models is the ambiguities among classes when the number of persons being considered increases. To reduce the amount of ambiguity, we propose the use of a rich set of feature descriptors based on color, textures and edges. Another issue regarding appearance modeling is the limited number of training samples available for each appearance. The discriminative models are created using a powerful statistical tool called partial least squares (PLS), responsible for weighting the features according to their discriminative power for each different appearance. The experimental results, based on appearance-based person recognition, demonstrate that the use of an enriched feature set analyzed by PLS reduces the ambiguity among different appearances and provides higher recognition rates when compared to other machine learning techniques.
AbstractList Appearance information is essential for applications such as tracking and people recognition. One of the main problems of using appearance-based discriminative models is the ambiguities among classes when the number of persons being considered increases. To reduce the amount of ambiguity, we propose the use of a rich set of feature descriptors based on color, textures and edges. Another issue regarding appearance modeling is the limited number of training samples available for each appearance. The discriminative models are created using a powerful statistical tool called partial least squares (PLS), responsible for weighting the features according to their discriminative power for each different appearance. The experimental results, based on appearance-based person recognition, demonstrate that the use of an enriched feature set analyzed by PLS reduces the ambiguity among different appearances and provides higher recognition rates when compared to other machine learning techniques.
Author Schwartz, W.R.
Davis, L.S.
Author_xml – sequence: 1
  givenname: W.R.
  surname: Schwartz
  fullname: Schwartz, W.R.
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 2
  givenname: L.S.
  surname: Davis
  fullname: Davis, L.S.
  organization: Univ. of Maryland, College Park, MD, USA
BookMark eNotT01PwkAQXSMmAnI38dI_UJzZ3W67R0DERoxE5EzG7tSswVK71cR_7xrNO7zkfUzmjcSgOTYsxCXCFBHs9bacr55mm3IqAexUyxMxsXkBubGZKlCZUzFCLbXWUZUDMcRMQYqF0udiFMIbAFpriqG4XzN1jW9ekxsfqs6_-4Z6_8XJrG2jQ03F6ZwCu-Th6PgQkl34DW-o6z0dktgOfbL9-KSOw4U4q-kQePLPY7G7XT4v7tL146pczNaplxr7VLtcOcO6tshKUmFshZCR067OVISGygFX0auZX6pc5gWxcwqcQjCEaiyu_u56Zt638WnqvveZslkcqH4AR9xR3g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SIBGRAPI.2009.42
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9780769538136
0769538134
EndPage 329
ExternalDocumentID 5395183
Genre orig-research
GroupedDBID 23M
29O
29R
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i241t-4d73d6e4f91e32a869c105ad4df5353540cd0ece32feebc7278aedd30d3106a13
IEDL.DBID RIE
ISBN 1424449782
9781424449781
ISSN 1530-1834
IngestDate Wed Aug 27 03:01:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-4d73d6e4f91e32a869c105ad4df5353540cd0ece32feebc7278aedd30d3106a13
PageCount 8
ParticipantIDs ieee_primary_5395183
PublicationCentury 2000
PublicationDate 2009-10
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10
PublicationDecade 2000
PublicationTitle 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing
PublicationTitleAbbrev SIBGRA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019968
ssj0000452303
ssib015832082
Score 2.2883985
Snippet Appearance information is essential for applications such as tracking and people recognition. One of the main problems of using appearance-based discriminative...
SourceID ieee
SourceType Publisher
StartPage 322
SubjectTerms Appearance-Based Models
Co-occurrence matrices
Computer graphics
Data mining
Filtering
HOG
Image analysis
Image processing
Informatics
Least squares methods
Partial Least Squares
PLS
Signal analysis
Signal processing
Wavelet analysis
Title Learning Discriminative Appearance-Based Models Using Partial Least Squares
URI https://ieeexplore.ieee.org/document/5395183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbVI7bjJSoLS8VFEqdasc-4wqqpZHsvDr8TlJqRADWxIvjvXp7pPvu-8IOTM6UpHl9R50TNvjgQk8CbHw4rZSICVXQeJUvo-iP-a3k3BSIeerXhgAcOIzaOKjq-XrpcrwqqwVMssHIlYl1U4k8l6tEjtBaKHpFz4tLgpzvO9cRWUU20a5dyrWMhkvm7xwwlq79H4q3oOynunHrdGge_N0MRzk1pY40X1tCotLQr0t8lBuP9eevDazNGmqr1_Ojv_9v23S-Gn3o8NVItshFVjsks01p8I6uSt8WF_o1QwDDQpoMFBSy2LtCkLH69qEqCkOV5t_UidFoEMEppzTe5wQREfvGXY7Nci4d_182feKOQzezOb31OO6w7QAbuIAWFtGIlaWlUnNtQlZiBdHSvug7JoBSJRlRJEErZmvLXcUMmB7pLZYLmCf0FgZS9CMEAlEGDoSHnLQiW9x4Ssj-QGp47FM33KrjWlxIod_fz4iG66447R1x6SWfmRwYjlCmpw6cHwDSXu0Lw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALS4vY8YEjabM4aXKkQGnpooq2Um-VY49RRdWyJBe-Ho-TlApx4BbHJ1tPM0-eN28IuVYyFKHm9RbUlWsxRzkWhyiwIlcI4JwJJzYq337QGrOniT_ZIDerXhgAMOIzqOKnqeXLpUjxqazme5oPhN4m2fIZY37WrVWgx_E1OO3cqcXEYYYvnqu4jHLbMHNPxWqmx4o2L5yx5hbuT_naKSqadlQbthuPz7eDdmZuiTPd1-awmDTU3CO94gCZ-uS1miZxVXz98nb87wn3SeWn4Y8OVqnsgGzA4pDsrnkVlkknd2J9ofczDDUoocFQSTWP1TsIHquhU6KkOF5t_kmNGIEOEJp8Trs4I4gO31Psd6qQcfNhdNey8kkM1kxn-MRisu7JAJiKHPBcHgaR0LyMSyaV7_n4dCSkDULvKYBYaE4UcpDSs6VmjwF3vCNSWiwXcExoJJSmaCoIYggxeMTMZyBjWyPDFoqzE1LGa5m-ZWYb0_xGTv_-fUW2W6Ned9pt9ztnZMeUeozS7pyUko8ULjRjSOJLA5Rv8E63fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+XXII+Brazilian+Symposium+on+Computer+Graphics+and+Image+Processing&rft.atitle=Learning+Discriminative+Appearance-Based+Models+Using+Partial+Least+Squares&rft.au=Schwartz%2C+W.R.&rft.au=Davis%2C+L.S.&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424449781&rft.issn=1530-1834&rft.spage=322&rft.epage=329&rft_id=info:doi/10.1109%2FSIBGRAPI.2009.42&rft.externalDocID=5395183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-1834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-1834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-1834&client=summon