Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle

The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 4958 - 4965
Main Authors Runsheng Yu, Zhenyu Shi, Chaoxing Huang, Tenglong Li, Qiongxiong Ma
Format Conference Proceeding
LanguageEnglish
Published Technical Committee on Control Theory, CAA 01.07.2017
Subjects
Online AccessGet full text
ISSN1934-1768
DOI10.23919/ChiCC.2017.8028138

Cover

Abstract The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network selects action and the other evaluates whether the selected action is accurate, and they modify themselves through a deep deterministic policy gradient(DDPG). These two neural networks are made up of multiple fully connected layers. Based on theories and simulations, this algorithm is more accurate than traditional PID control in solving the trajectory tracking of AUV in complex curves to a certain precision.
AbstractList The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network selects action and the other evaluates whether the selected action is accurate, and they modify themselves through a deep deterministic policy gradient(DDPG). These two neural networks are made up of multiple fully connected layers. Based on theories and simulations, this algorithm is more accurate than traditional PID control in solving the trajectory tracking of AUV in complex curves to a certain precision.
Author Qiongxiong Ma
Runsheng Yu
Zhenyu Shi
Tenglong Li
Chaoxing Huang
Author_xml – sequence: 1
  surname: Runsheng Yu
  fullname: Runsheng Yu
  email: 20143201002@m.scnu.edu.cn
  organization: South China Normal Univ., Guangzhou, China
– sequence: 2
  surname: Zhenyu Shi
  fullname: Zhenyu Shi
  email: 20143201094@m.scnu.edu.cn
  organization: South China Normal Univ., Guangzhou, China
– sequence: 3
  surname: Chaoxing Huang
  fullname: Chaoxing Huang
  email: goldenhwong@gmail.com
  organization: South China Normal Univ., Guangzhou, China
– sequence: 4
  surname: Tenglong Li
  fullname: Tenglong Li
  email: 20143201060@m.scnu.edu.cn
  organization: South China Normal Univ., Guangzhou, China
– sequence: 5
  surname: Qiongxiong Ma
  fullname: Qiongxiong Ma
  email: robotteam@qq.com
  organization: South China Normal Univ., Guangzhou, China
BookMark eNotUM1OAyEYRKOJbfUJeuEFtgIfy8LRrL9JEy96blj41lK30LBU07e3jZ3LzGEymZkpuYopIiFzzhYCDDf37Tq07UIw3iw0E5qDviBTozWvFRiASzLhBmTFG6VvyHQcN4wpZjhMSP-IuKMZQ-xTdrjFWOiANscQv2hnR_Q07UrY2oGWbDfoSsqHk3TfJ4dLseQ00NRTuy8ppm3aj3QfPeZfWzDTH1wHN-Atue7tMOLdmWfk8_npo32tlu8vb-3DsgpC8lJJWdcO6yNACKGc5sbWIK1Q0HXAO258Y5R3aP1xG7MSm14Ihx0XzkuvYEbm_7kBEVe7fCyeD6vzJ_AH6ktaqw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ChiCC.2017.8028138
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9881563933
9789881563934
EISSN 1934-1768
EndPage 4965
ExternalDocumentID 8028138
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-4455ce555532226c819a534a263bb31b19d796dcead8150a4e7f22ceb12cd4d63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:23:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-4455ce555532226c819a534a263bb31b19d796dcead8150a4e7f22ceb12cd4d63
PageCount 8
ParticipantIDs ieee_primary_8028138
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev ChiCC
PublicationYear 2017
Publisher Technical Committee on Control Theory, CAA
Publisher_xml – name: Technical Committee on Control Theory, CAA
SSID ssj0060913
Score 2.3403723
Snippet The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep...
SourceID ieee
SourceType Publisher
StartPage 4958
SubjectTerms Autonomous Underwater Vehicles
Deep Reinforcement Learning
Learning (artificial intelligence)
Mathematical model
Neural networks
Optimal Control System
Stability analysis
Training
Trajectory tracking
Title Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle
URI https://ieeexplore.ieee.org/document/8028138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN7UnvTiozW-sweP0gb2AXtGm8akxoNNemt2l8XWR2kQNPrrnQFaH_Egpw0JgexM5htm5_uGkHMf04bABp6UqfQ4M4GnIiE9QMJAaCW1MkhwHt3I4ZhfT8SkRS7WXBjnXNV85nq4rM7yk8yWWCrrRwCGPos2yEYYqpqrtYq6EvUta1WhgClf9ePZPI6xdSvsNY_9mJ9Swcdgm4xWL667Rh57ZWF69uOXJuN_v2yHdL-IevR2DUG7pOUWe2Trm8Zgh6SXzi1p7iqFVFsVA2kzKuKeIoYlNIOw8ayfaJHrh6qI_45Li0V02rSy0yyluiyQAZGVLxSZZ_kbpKk5fXUzdL0uGQ-u7uKh1wxX8OYA2oXHuRDWCbjwrEVayAy0YFwHkhnDfOOrJFQyseBpESSNmrswBaNCaA9swhPJ9kl7kS3cAaFCayO4S0OHRFtmNCQR4Bh-pFP4QUrCQ9LBHZsua_2MabNZR3_fPiabaLW6JfaEtIu8dKcA_IU5qyz-Cf4MsFM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCFR4t444GRtEpiO8kcqAq0FUMrdatsx6Hl0VQhAcGv55yk5SEGMlmRrES-033n832fAc5tkzY4yrE4j7lFXelYgc-4hUjoMBFwEUhDcO71eWdIb0ZstAIXSy6M1rpoPtNNMyzO8qNE5aZU1vIRDG3XX4U1hrsKr2RrLeIuNwqXpa6Q4wZ20Aon0zA0zVtes5r44waVAkDaW9BbfLrsG3ls5plsqo9fqoz__bdtaHxR9cjdEoR2YEXPdmHzm8pgHeJLreck1YVGqirKgaS6LOKeGBSLSIKB41k8kSwVD0UZ_90MlSmjk6qZnSQxEXlmOBBJ_kIM9yx9w0Q1Ja96YpyvAcP21SDsWNX1CtYUYTuzKGVMaYaPOW3hCnMDwVwqHO5K6drSDiIv4JFCX_MxbRRUezGaFYO7oyIacXcParNkpveBMCEkozr2tKHaulJgGoGuYfsixi1S5B1A3azYeF4qaIyrxTr8-_UZrHcGve64e92_PYINY8GyQfYYalma6xNMAzJ5Wlj_E2rgs6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Deep+reinforcement+learning+based+optimal+trajectory+tracking+control+of+autonomous+underwater+vehicle&rft.au=Runsheng+Yu&rft.au=Zhenyu+Shi&rft.au=Chaoxing+Huang&rft.au=Tenglong+Li&rft.date=2017-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+CAA&rft.eissn=1934-1768&rft.spage=4958&rft.epage=4965&rft_id=info:doi/10.23919%2FChiCC.2017.8028138&rft.externalDocID=8028138