Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle
The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network...
Saved in:
Published in | Chinese Control Conference pp. 4958 - 4965 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, CAA
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1934-1768 |
DOI | 10.23919/ChiCC.2017.8028138 |
Cover
Abstract | The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network selects action and the other evaluates whether the selected action is accurate, and they modify themselves through a deep deterministic policy gradient(DDPG). These two neural networks are made up of multiple fully connected layers. Based on theories and simulations, this algorithm is more accurate than traditional PID control in solving the trajectory tracking of AUV in complex curves to a certain precision. |
---|---|
AbstractList | The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep reinforcement learning (DRL). The deep reinforcement learning of an underwater motion control system is composed of two neural networks: one network selects action and the other evaluates whether the selected action is accurate, and they modify themselves through a deep deterministic policy gradient(DDPG). These two neural networks are made up of multiple fully connected layers. Based on theories and simulations, this algorithm is more accurate than traditional PID control in solving the trajectory tracking of AUV in complex curves to a certain precision. |
Author | Qiongxiong Ma Runsheng Yu Zhenyu Shi Tenglong Li Chaoxing Huang |
Author_xml | – sequence: 1 surname: Runsheng Yu fullname: Runsheng Yu email: 20143201002@m.scnu.edu.cn organization: South China Normal Univ., Guangzhou, China – sequence: 2 surname: Zhenyu Shi fullname: Zhenyu Shi email: 20143201094@m.scnu.edu.cn organization: South China Normal Univ., Guangzhou, China – sequence: 3 surname: Chaoxing Huang fullname: Chaoxing Huang email: goldenhwong@gmail.com organization: South China Normal Univ., Guangzhou, China – sequence: 4 surname: Tenglong Li fullname: Tenglong Li email: 20143201060@m.scnu.edu.cn organization: South China Normal Univ., Guangzhou, China – sequence: 5 surname: Qiongxiong Ma fullname: Qiongxiong Ma email: robotteam@qq.com organization: South China Normal Univ., Guangzhou, China |
BookMark | eNotUM1OAyEYRKOJbfUJeuEFtgIfy8LRrL9JEy96blj41lK30LBU07e3jZ3LzGEymZkpuYopIiFzzhYCDDf37Tq07UIw3iw0E5qDviBTozWvFRiASzLhBmTFG6VvyHQcN4wpZjhMSP-IuKMZQ-xTdrjFWOiANscQv2hnR_Q07UrY2oGWbDfoSsqHk3TfJ4dLseQ00NRTuy8ppm3aj3QfPeZfWzDTH1wHN-Atue7tMOLdmWfk8_npo32tlu8vb-3DsgpC8lJJWdcO6yNACKGc5sbWIK1Q0HXAO258Y5R3aP1xG7MSm14Ihx0XzkuvYEbm_7kBEVe7fCyeD6vzJ_AH6ktaqw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/ChiCC.2017.8028138 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9881563933 9789881563934 |
EISSN | 1934-1768 |
EndPage | 4965 |
ExternalDocumentID | 8028138 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i241t-4455ce555532226c819a534a263bb31b19d796dcead8150a4e7f22ceb12cd4d63 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:23:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-4455ce555532226c819a534a263bb31b19d796dcead8150a4e7f22ceb12cd4d63 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8028138 |
PublicationCentury | 2000 |
PublicationDate | 2017-07 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07 |
PublicationDecade | 2010 |
PublicationTitle | Chinese Control Conference |
PublicationTitleAbbrev | ChiCC |
PublicationYear | 2017 |
Publisher | Technical Committee on Control Theory, CAA |
Publisher_xml | – name: Technical Committee on Control Theory, CAA |
SSID | ssj0060913 |
Score | 2.3403723 |
Snippet | The aim of this paper is to solve the control problem of trajectory tracking of Autonomous Underwater Vehicles (AUVs) through using and improving deep... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4958 |
SubjectTerms | Autonomous Underwater Vehicles Deep Reinforcement Learning Learning (artificial intelligence) Mathematical model Neural networks Optimal Control System Stability analysis Training Trajectory tracking |
Title | Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle |
URI | https://ieeexplore.ieee.org/document/8028138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN7UnvTiozW-sweP0gb2AXtGm8akxoNNemt2l8XWR2kQNPrrnQFaH_Egpw0JgexM5htm5_uGkHMf04bABp6UqfQ4M4GnIiE9QMJAaCW1MkhwHt3I4ZhfT8SkRS7WXBjnXNV85nq4rM7yk8yWWCrrRwCGPos2yEYYqpqrtYq6EvUta1WhgClf9ePZPI6xdSvsNY_9mJ9Swcdgm4xWL667Rh57ZWF69uOXJuN_v2yHdL-IevR2DUG7pOUWe2Trm8Zgh6SXzi1p7iqFVFsVA2kzKuKeIoYlNIOw8ayfaJHrh6qI_45Li0V02rSy0yyluiyQAZGVLxSZZ_kbpKk5fXUzdL0uGQ-u7uKh1wxX8OYA2oXHuRDWCbjwrEVayAy0YFwHkhnDfOOrJFQyseBpESSNmrswBaNCaA9swhPJ9kl7kS3cAaFCayO4S0OHRFtmNCQR4Bh-pFP4QUrCQ9LBHZsua_2MabNZR3_fPiabaLW6JfaEtIu8dKcA_IU5qyz-Cf4MsFM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCFR4t444GRtEpiO8kcqAq0FUMrdatsx6Hl0VQhAcGv55yk5SEGMlmRrES-033n832fAc5tkzY4yrE4j7lFXelYgc-4hUjoMBFwEUhDcO71eWdIb0ZstAIXSy6M1rpoPtNNMyzO8qNE5aZU1vIRDG3XX4U1hrsKr2RrLeIuNwqXpa6Q4wZ20Aon0zA0zVtes5r44waVAkDaW9BbfLrsG3ls5plsqo9fqoz__bdtaHxR9cjdEoR2YEXPdmHzm8pgHeJLreck1YVGqirKgaS6LOKeGBSLSIKB41k8kSwVD0UZ_90MlSmjk6qZnSQxEXlmOBBJ_kIM9yx9w0Q1Ja96YpyvAcP21SDsWNX1CtYUYTuzKGVMaYaPOW3hCnMDwVwqHO5K6drSDiIv4JFCX_MxbRRUezGaFYO7oyIacXcParNkpveBMCEkozr2tKHaulJgGoGuYfsixi1S5B1A3azYeF4qaIyrxTr8-_UZrHcGve64e92_PYINY8GyQfYYalma6xNMAzJ5Wlj_E2rgs6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Deep+reinforcement+learning+based+optimal+trajectory+tracking+control+of+autonomous+underwater+vehicle&rft.au=Runsheng+Yu&rft.au=Zhenyu+Shi&rft.au=Chaoxing+Huang&rft.au=Tenglong+Li&rft.date=2017-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+CAA&rft.eissn=1934-1768&rft.spage=4958&rft.epage=4965&rft_id=info:doi/10.23919%2FChiCC.2017.8028138&rft.externalDocID=8028138 |