Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior

We present a novel algorithm aiming to estimate the 3D shape, the texture of a human face, along with the 3D pose and the light direction from a single photograph by recovering the parameters of a 3D morphable model. Generally, the algorithms tackling the problem of 3D shape estimation from image da...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 986 - 993 vol. 2
Main Authors Romdhani, S., Vetter, T.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.145

Cover

Abstract We present a novel algorithm aiming to estimate the 3D shape, the texture of a human face, along with the 3D pose and the light direction from a single photograph by recovering the parameters of a 3D morphable model. Generally, the algorithms tackling the problem of 3D shape estimation from image data use only the pixels intensity as input to drive the estimation process. This was previously achieved using either a simple model, such as the Lambertian reflectance model, leading to a linear fitting algorithm. Alternatively, this problem was addressed using a more precise model and minimizing a non-convex cost function with many local minima. One way to reduce the local minima problem is to use a stochastic optimization algorithm. However, the convergence properties (such as the radius of convergence) of such algorithms, are limited. Here, as well as the pixel intensity, we use various image features such as the edges or the location of the specular highlights. The 3D shape, texture and imaging parameters are then estimated by maximizing the posterior of the parameters given these image features. The overall cost function obtained is smoother and, hence, a stochastic optimization algorithm is not needed to avoid the local minima problem. This leads to the multi-features fitting algorithm that has a wider radius of convergence and a higher level of precision. This is shown on some example photographs, and on a recognition experiment performed on the CMU-PIE image database.
AbstractList We present a novel algorithm aiming to estimate the 3D shape, the texture of a human face, along with the 3D pose and the light direction from a single photograph by recovering the parameters of a 3D morphable model. Generally, the algorithms tackling the problem of 3D shape estimation from image data use only the pixels intensity as input to drive the estimation process. This was previously achieved using either a simple model, such as the Lambertian reflectance model, leading to a linear fitting algorithm. Alternatively, this problem was addressed using a more precise model and minimizing a non-convex cost function with many local minima. One way to reduce the local minima problem is to use a stochastic optimization algorithm. However, the convergence properties (such as the radius of convergence) of such algorithms, are limited. Here, as well as the pixel intensity, we use various image features such as the edges or the location of the specular highlights. The 3D shape, texture and imaging parameters are then estimated by maximizing the posterior of the parameters given these image features. The overall cost function obtained is smoother and, hence, a stochastic optimization algorithm is not needed to avoid the local minima problem. This leads to the multi-features fitting algorithm that has a wider radius of convergence and a higher level of precision. This is shown on some example photographs, and on a recognition experiment performed on the CMU-PIE image database.
Author Vetter, T.
Romdhani, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Romdhani
  fullname: Romdhani, S.
  organization: Dept. of Comput. Sci., Basel Univ., Switzerland
– sequence: 2
  givenname: T.
  surname: Vetter
  fullname: Vetter, T.
  organization: Dept. of Comput. Sci., Basel Univ., Switzerland
BookMark eNpNT9tKAzEQDVrBtvbRJ1_yAd2a217yKLVeoKCI-lomu9M2sk2XJAvt3xtv4MDMgXPmnGFGZOD2Dgm55GzGOdPX8_fnl5lgLJ9xlZ-QIWeFzArN9SkZsbLQuZClEIN_wjmZhPDBUkktKyWGxC9CtDuI1m2ovKVhCx1ScA2NeIi9R9qHL6mzB2ypdRFdsPE4pdhsMExp6LDuW_B0azfbNnVM5J-13rsQPSRX-I4E2nm79xfkbA1twMkvjsnb3eJ1_pAtn-4f5zfLzArFYyZRVlwatq4VX5tKCMOhNKYBVtaGFQ3TTCMoAJOXaSRolNZFhWlHQ_pwTK5-ci0irtLpHfjjiquizHMmPwGaLWAf
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.145
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 993 vol. 2
ExternalDocumentID 1467550
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-3e3813b0fc41fb822b1a7bbda07cb06d0909ea4aab57aabab5d49968ebbd9a003
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-3e3813b0fc41fb822b1a7bbda07cb06d0909ea4aab57aabab5d49968ebbd9a003
ParticipantIDs ieee_primary_1467550
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.073236
Snippet We present a novel algorithm aiming to estimate the 3D shape, the texture of a human face, along with the 3D pose and the light direction from a single...
SourceID ieee
SourceType Publisher
StartPage 986
SubjectTerms Convergence
Cost function
Face
Humans
Image recognition
Parameter estimation
Pixel
Reflectivity
Shape
Stochastic processes
Title Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior
URI https://ieeexplore.ieee.org/document/1467550
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-QkydUMH6nB48M9lnWM0KICYYYMdxIu74hkQwyRqL-9b63DzDGg5dtfVubrWv7Pvre7zF2H8eRAD8SFrhGWr4xgaXD2LYk8mJHyUjbhqKRx09iNPUfZ8Gsxtr7WBgAyJ3PoEOX-V6-WUc7MpV1aVYHpKAf9UJRxGrt7SkUYxqWah6VPdRshNzvKLiUjSXf-RSeJaQjCxVeBnTDLZF4qrI8gHF2-6-T58L04lDI048ULDkHGjbYuHr3wvHkvbPLdCf6-gXr-N-PO2GtQ6wfn-y52CmrQXLGGqVwysupv0VSlf-hojVZOsD1gSTeZMG9B759UxvgKjGcvEl2KXByql_wzfIDVnxZ-Mpnn21OJrxtm1OQJznBcoJMXpGRAIlV1YjkVkpfkW3zJhXfpMt12mLT4eClP7LKHA7WEmWDzPIARQJP23HkO7FGaUQ7qqe1UXYPx4EwtrQlKF8pHfTwgCeDOpgIAZ-RCn_jOasn6wQuGCdVE_ksuIQ_pECH2KSLNVwVEMxccMma1KvzTQHTMS879Opv8jU7zlFYc2vKDatn6Q5uUb7I9F0-sL4BnCXJfQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPejJBxjf7sEjhb62sGeEoAIxRgw3studKpEUUkqi_npn-gBjPHhpu9Pupt3u7jx25hvGbqIoDMAPAwtcIy3fGGHpVmRbEnmxo2SobUPRyINh0Bv592Mx3mK1dSwMAGTOZ1Cny2wv38zDFZnKGjSrBSnoO8L3fZFHa60tKhRl2ioUPSp7qNsEcr2n4FI-lmzvM_CsQDoyV-KloBtugcVTluUGjrPRfnl8yo0vDgU9_UjCkvGg7j4blG-fu56811eprodfv4Ad__t5B6y6ifbjj2s-dsi2ID5i-4V4yovJv0RSmQGipFVY0sEVgmTe-JV7t3z5phbAVWw4-ZOsEuDkVv_KF9MPmPFp7i2fftY4GfGWNU5hnuQGywk0eUZmAiSWVUOSXCmBRbrMmlR8kUznSZWNup3nds8qsjhYU5QOUssDFAo8bUeh70Qa5RHtqKbWRtlNHAmBsaUtQflKadHEA54MamFBC_AZqfA3HrPteB7DCeOkbCKnBZcQiBToFjbpYg1XCQKaE6esQr06WeRAHZOiQ8_-Jl-z3d7zoD_p3w0fztlehsma2VYu2HaarOASpY1UX2WD7BtaeMzK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Estimating+3D+shape+and+texture+using+pixel+intensity%2C+edges%2C+specular+highlights%2C+texture+constraints+and+a+prior&rft.au=Romdhani%2C+S.&rft.au=Vetter%2C+T.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=986&rft.epage=993+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.145&rft.externalDocID=1467550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon