An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices

Traffic state estimation is a challenging problem for the transportation community due to the limited deployment of sensing infrastructure. However, recent trends in the mobile phone industry suggest that GPS equipped devices will become standard in the next few years. Leveraging these GPS equipped...

Full description

Saved in:
Bibliographic Details
Published in2008 47th IEEE Conference on Decision and Control pp. 5062 - 5068
Main Authors Work, D.B., Tossavainen, O.-P., Blandin, S., Bayen, A.M., Iwuchukwu, T., Tracton, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2008
Subjects
Online AccessGet full text
ISBN9781424431236
1424431239
ISSN0191-2216
DOI10.1109/CDC.2008.4739016

Cover

Abstract Traffic state estimation is a challenging problem for the transportation community due to the limited deployment of sensing infrastructure. However, recent trends in the mobile phone industry suggest that GPS equipped devices will become standard in the next few years. Leveraging these GPS equipped devices as traffic sensors will fundamentally change the type and the quality of traffic data collected on large scales in the near future. New traffic models and data assimilation algorithms must be developed to efficiently transform this data into usable traffic information. In this work, we introduce a new partial differential equation (PDE) based on the Lighthill-Whitham-Richards PDE, which serves as a flow model for velocity. We formulate a Godunov discretization scheme to cast the PDE into a Velocity Cell Transmission Model (CTM-v), which is a nonlinear dynamical system with a time varying observation matrix. The Ensemble Kalman Filtering (EnKF) technique is applied to the CTM- v to estimate the velocity field on the highway using data obtained from GPS devices, and the method is illustrated in microsimulation on a fully calibrated model of I880 in California. Experimental validation is performed through the unprecedented 100-vehicle Mobile Century experiment, which used a novel privacy-preserving traffic monitoring system to collect GPS cell phone data specifically for this research.
AbstractList Traffic state estimation is a challenging problem for the transportation community due to the limited deployment of sensing infrastructure. However, recent trends in the mobile phone industry suggest that GPS equipped devices will become standard in the next few years. Leveraging these GPS equipped devices as traffic sensors will fundamentally change the type and the quality of traffic data collected on large scales in the near future. New traffic models and data assimilation algorithms must be developed to efficiently transform this data into usable traffic information. In this work, we introduce a new partial differential equation (PDE) based on the Lighthill-Whitham-Richards PDE, which serves as a flow model for velocity. We formulate a Godunov discretization scheme to cast the PDE into a Velocity Cell Transmission Model (CTM-v), which is a nonlinear dynamical system with a time varying observation matrix. The Ensemble Kalman Filtering (EnKF) technique is applied to the CTM- v to estimate the velocity field on the highway using data obtained from GPS devices, and the method is illustrated in microsimulation on a fully calibrated model of I880 in California. Experimental validation is performed through the unprecedented 100-vehicle Mobile Century experiment, which used a novel privacy-preserving traffic monitoring system to collect GPS cell phone data specifically for this research.
Author Bayen, A.M.
Work, D.B.
Iwuchukwu, T.
Tracton, K.
Tossavainen, O.-P.
Blandin, S.
Author_xml – sequence: 1
  givenname: D.B.
  surname: Work
  fullname: Work, D.B.
  organization: Dept. of Civil & Environ. Eng., Univ. of California, Berkeley, CA, USA
– sequence: 2
  givenname: O.-P.
  surname: Tossavainen
  fullname: Tossavainen, O.-P.
  organization: Dept. of Civil & Environ. Eng., Univ. of California, Berkeley, CA, USA
– sequence: 3
  givenname: S.
  surname: Blandin
  fullname: Blandin, S.
  organization: Dept. Ville Environnement Transp., Ecole Nat. des Ponts et Chaussees, Marne-la-Vallee, France
– sequence: 4
  givenname: A.M.
  surname: Bayen
  fullname: Bayen, A.M.
  organization: Dept. of Civil & Environ. Eng., Univ. of California, Berkeley, CA, USA
– sequence: 5
  givenname: T.
  surname: Iwuchukwu
  fullname: Iwuchukwu, T.
  organization: Nokia Res. Center, Palo Alto, CA, USA
– sequence: 6
  givenname: K.
  surname: Tracton
  fullname: Tracton, K.
  organization: Nokia Res. Center, Palo Alto, CA, USA
BookMark eNpV0M1Kw0AUBeARW7Ct3Qtu5gUS5y8zmWWJWsWCgrouN8mddiSZlExU-vZG7MbV5cDh43DnZBK6gIRccZZyzuxNcVukgrE8VUZaxvUZWVqTcyWUklwoef4vSz0hM8YtT4TgekpmxiZaMav5BZnH-MFGiWk9I_UqUAwR27JB-gRNC4E63wzY-7CjcDj0HVR7OnR073f7bzjSoQfnfEUxDr6FwXeBfsbf8vrldaRghGradqUfwRq_fIXxkkwdNBGXp7sg7_d3b8VDsnlePxarTeKF4kMiKyitltq5UkKmUZmqNiBKx7BimawsrxlkihtQeVYKmQMzXFslMBPaZU4uyPWf6xFxe-jHff1xe3qY_AGa3FyU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC.2008.4739016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424431243
1424431247
EndPage 5068
ExternalDocumentID 4739016
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-3cab9636ffb3a56e47cd7a2bf0ec053c91d0a5417a485b238a0716942e526f5f3
IEDL.DBID RIE
ISBN 9781424431236
1424431239
ISSN 0191-2216
IngestDate Wed Aug 27 02:14:08 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 79-640961
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-3cab9636ffb3a56e47cd7a2bf0ec053c91d0a5417a485b238a0716942e526f5f3
PageCount 7
ParticipantIDs ieee_primary_4739016
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationTitle 2008 47th IEEE Conference on Decision and Control
PublicationTitleAbbrev CDC
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0001215762
Score 1.7790158
Snippet Traffic state estimation is a challenging problem for the transportation community due to the limited deployment of sensing infrastructure. However, recent...
SourceID ieee
SourceType Publisher
StartPage 5062
SubjectTerms Data assimilation
Filtering
Global Positioning System
Kalman filters
Large-scale systems
Mobile handsets
Road transportation
State estimation
Traffic control
Transforms
Title An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices
URI https://ieeexplore.ieee.org/document/4739016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKJ1g4WsQtD4y4zWHHyYgKpQIVVYJK3Sofz6iiTVCVDvDrsXO0BTGgLDmkxHmJ3_19RuhaUSg0I-FKMEIZ4yQBLkmcGBmD3SQ4NPLwORqM6eOETRroZo2FAYCi-Qw6breo5etMrVyqrEu5i9CjHbTD46jEam3lU3zrOm-oo2KvrFPaeIQEgR_VoK7Qquqk5nqqjtf1Sy_p9u56ZYdl9bAfq64URqe_j4b1cMtek_fOKpcd9fWLyfG_73OA2ht4Hx6tDdchakB6hPa2mAlbSN-m2Aa4sJBzwE9ivhApNjNXWbeXcU1EjvMMF3zH4hPnS-HYKLBj7SjhkNj11L_hh9GLvZVDaGm8yKTVQlhDoZ_aaNy_f-0NSLUgA5lZQ5-TUAlpJ2xkjAwFi4BypbkIpPFA2cmsEl97glGfCxozaZ0B4TkyHhoACyLDTHiMmmmWwgnCoXHSV8L5J1TZGIxppeyXkYlmrlXnFLWcvKYfJefGtBLV2d-nz9Fu2cfhUiMXqJkvV3BpnYVcXhV_yTc-sbdQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGYCFo0XceGDEbQ47x4gKpdBDlWilbpXtPKOKNkFVOsCvx85RCmJAWXJIifMSv_v7jNCNpJBpRuJLzghlzCch-IIEoRIB6E2AQSP3B15nTJ8nbFJBt2ssDABkzWfQMLtZLT9K5MqkyprUNxG6t4W2GaWU5WitjYyKrZ3nb_KowMorlToiIY5jeyWsy9XKOizZnorjdQXTCput-1beY1k87se6K5nZae-jfjngvNvkrbFKRUN-_uJy_O8bHaD6N8APD9em6xBVID5CexvchDUU3cVYh7iwEHPAXT5f8Birmamt68u4pCLHaYIzxmP-gdMlN3wU2PB25IBIbLrqX_Hj8EXfymC0IrxIhNZDOIJMQ9XRuP0wanVIsSQDmWlTnxJXcqGnrKeUcDnzgPoy8rkjlAVST2cZ2pHFGbV9TgMmtDvALUPHQx1gjqeYco9RNU5iOEHYVUb6khsPhUodhbFISv1lRBgx06xzimpGXtP3nHVjWojq7O_T12inM-r3pr2nQfcc7eZdHSZRcoGq6XIFl9p1SMVV9sd8AQ4Aup0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+47th+IEEE+Conference+on+Decision+and+Control&rft.atitle=An+ensemble+Kalman+filtering+approach+to+highway+traffic+estimation+using+GPS+enabled+mobile+devices&rft.au=Work%2C+D.B.&rft.au=Tossavainen%2C+O.-P.&rft.au=Blandin%2C+S.&rft.au=Bayen%2C+A.M.&rft.date=2008-01-01&rft.pub=IEEE&rft.isbn=9781424431236&rft.issn=0191-2216&rft.spage=5062&rft.epage=5068&rft_id=info:doi/10.1109%2FCDC.2008.4739016&rft.externalDocID=4739016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon