Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach
Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets as electricity load data becomes bigger and more complex in recent years. In this paper, a novel machine learning model combining convolutio...
        Saved in:
      
    
          | Published in | International Conference on Big Data and Smart Computing pp. 119 - 125 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.02.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2375-9356 | 
| DOI | 10.1109/BIGCOMP.2017.7881726 | 
Cover
| Abstract | Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets as electricity load data becomes bigger and more complex in recent years. In this paper, a novel machine learning model combining convolutional neural network with K-means clustering is proposed for short-term load forecasting with improved scalability. The large data set is clustered into subsets using K-means algorithm, then the obtained subsets are used to train the convolutional neural network. A real-world power industry data set containing more than 1.4 million of load records is used in this study and the experimental results demonstrate the effectiveness of the proposed method. | 
    
|---|---|
| AbstractList | Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets as electricity load data becomes bigger and more complex in recent years. In this paper, a novel machine learning model combining convolutional neural network with K-means clustering is proposed for short-term load forecasting with improved scalability. The large data set is clustered into subsets using K-means algorithm, then the obtained subsets are used to train the convolutional neural network. A real-world power industry data set containing more than 1.4 million of load records is used in this study and the experimental results demonstrate the effectiveness of the proposed method. | 
    
| Author | Lijun Qian Lei Huang Xishuang Dong  | 
    
| Author_xml | – sequence: 1 surname: Xishuang Dong fullname: Xishuang Dong email: dongxishuang@gmail.com organization: Center of Excellence in Res. & Educ. for Big Mil. Data Intell., Prairie View A&M Univ., Prairie View, TX, USA – sequence: 2 surname: Lijun Qian fullname: Lijun Qian email: liqian@pvamu.edu organization: Center of Excellence in Res. & Educ. for Big Mil. Data Intell., Prairie View A&M Univ., Prairie View, TX, USA – sequence: 3 surname: Lei Huang fullname: Lei Huang email: lhuang@pvamu.edu organization: Center of Excellence in Res. & Educ. for Big Mil. Data Intell., Prairie View A&M Univ., Prairie View, TX, USA  | 
    
| BookMark | eNotkEFOwzAQRQ0CiVJ6Alj4AikzcWzH7EoEpaK0SMCCVeXETmvUOJUdFtweI6ovzazm6c2_JGe-95aQG4QpIqjb-8W8Wr-8TnNAOZVliTIXJ2SiZIkcFDBALk7JKGeSZ4pxcUEmMX4BACqhcgkj8vm268OQDTZ0dN9rQ9s-2EbHwfktdZ7GToeBboMzd3RGm76rnbeGVqsV1d7Q56yz2kfa7L9jYvwd6cMh9LrZXZHzVu-jnRz3mHw8PrxXT9lyPV9Us2Xm8gKHLI0yF0a3NbctcCasQGzrIgnqukDdJptGcKiNSF8YxVFJVkOK4ow3nI3J9T_XWWs3h-CS8c_mWAb7Be85VQA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/BIGCOMP.2017.7881726 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9781509030156 1509030158  | 
    
| EISSN | 2375-9356 | 
    
| EndPage | 125 | 
    
| ExternalDocumentID | 7881726 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i241t-241826dafb5ef0536e611fb4969ab41afecac650bd6375d951973b0b0b9535c53 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:13:34 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i241t-241826dafb5ef0536e611fb4969ab41afecac650bd6375d951973b0b0b9535c53 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_7881726 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-02 | 
    
| PublicationDateYYYYMMDD | 2017-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | International Conference on Big Data and Smart Computing | 
    
| PublicationTitleAbbrev | BIGCOMP | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001969270 | 
    
| Score | 2.0593605 | 
    
| Snippet | Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 119 | 
    
| SubjectTerms | Big Data Analytics Convolutional Neural Network Data models Forecasting Load forecasting Load modeling Machine Learning Predictive models Short-term Load Forecasting Testing Training  | 
    
| Title | Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach | 
    
| URI | https://ieeexplore.ieee.org/document/7881726 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7t2Njabt6UiKgBSZQET6RdWyXCMLBd_Ot93QZE48EsWZYlTZfXdu-99vu-h9CFlKFgxuUkjg0nQUAFgTQiIIEMtdBUeVxaNnJ_wHqj4GFMxxV0ueHCaK1z8Jl27GN-lq8WcWa3ylpW-py3WRVVecgKrtZ2PyViUZu7JTvOc6PWzf1d56k_tPAt7pRNf9RQyV1It476684L5MiHk6XSib9-6TL-9-t2UXNL1sPDjRvaQxWd7KP6uloDLhdvA70-v0OoTeyvGM8WQmEIV3UsVhb3jKcJXs1hFuG35VRd4WsMExFyZq1wZzDAIlH4kcw1uDUczzKrrWAbrfXIm2jUvX3p9EhZWIFMwWGnBG6QVShhJNUGViHTzPOMDMCEQgaeMNB7DKGbVMznVEWW3OpLF66I-jSm_gGqJYtEHyIs_IhJ19DACEisFAtd4RolQ9_4qq2YOUINa6nJZ6GdMSmNdPz36xO0Y0erQEWfolq6zPQZOP1Unuej_Q0OBK1s | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BoYWNtx7wpEUEYkgiJnki7tkqEYWC7-Nf7CgOi8WCWLMuSrstru_de933fQ-hKyprgxvFJFBmfUMoEgTSCEiprWmimXF9aNnLY5c0BfXxhLzl0vebCaK0X4DNdtpeLf_lqGqV2q6xipc_9Kt9C24zCY5dsrc2OSsCDqu9k_DjXCSp3rYf6U9izAC6_nDX-UUVl4UQaBRSuul9iRz7KaSLL0dcvZcb_vt8eKm3oeri3dkT7KKfjA1RY1WvA2fItotfndwi2if0Y4_FUKAwBq47E3CKf8SjG8wnMI_w2G6kbfIthKkLWrBWud7tYxAq3yUSDY8PROLXqCrbRSpG8hAaN-369SbLSCmQELjshcIK8QgkjmTawDrnmrmskBRMKSV1hoPcIgjepuOczFVh6qycdOALmsYh5hygfT2N9hLDwAi4dw6gRkFopXnOEY5SsecZTVcXNMSpaSw0_l-oZw8xIJ3_fvkQ7zX7YGXZa3fYp2rUjt8RIn6F8Mkv1OYQAibxYjPw3UX6wuQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Short-term+load+forecasting+in+smart+grid%3A+A+combined+CNN+and+K-means+clustering+approach&rft.au=Xishuang+Dong&rft.au=Lijun+Qian&rft.au=Lei+Huang&rft.date=2017-02-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1109%2FBIGCOMP.2017.7881726&rft.externalDocID=7881726 |