Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach

Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets as electricity load data becomes bigger and more complex in recent years. In this paper, a novel machine learning model combining convolutio...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Big Data and Smart Computing pp. 119 - 125
Main Authors Xishuang Dong, Lijun Qian, Lei Huang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2017
Subjects
Online AccessGet full text
ISSN2375-9356
DOI10.1109/BIGCOMP.2017.7881726

Cover

Abstract Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets as electricity load data becomes bigger and more complex in recent years. In this paper, a novel machine learning model combining convolutional neural network with K-means clustering is proposed for short-term load forecasting with improved scalability. The large data set is clustered into subsets using K-means algorithm, then the obtained subsets are used to train the convolutional neural network. A real-world power industry data set containing more than 1.4 million of load records is used in this study and the experimental results demonstrate the effectiveness of the proposed method.
AbstractList Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets as electricity load data becomes bigger and more complex in recent years. In this paper, a novel machine learning model combining convolutional neural network with K-means clustering is proposed for short-term load forecasting with improved scalability. The large data set is clustered into subsets using K-means algorithm, then the obtained subsets are used to train the convolutional neural network. A real-world power industry data set containing more than 1.4 million of load records is used in this study and the experimental results demonstrate the effectiveness of the proposed method.
Author Lijun Qian
Lei Huang
Xishuang Dong
Author_xml – sequence: 1
  surname: Xishuang Dong
  fullname: Xishuang Dong
  email: dongxishuang@gmail.com
  organization: Center of Excellence in Res. & Educ. for Big Mil. Data Intell., Prairie View A&M Univ., Prairie View, TX, USA
– sequence: 2
  surname: Lijun Qian
  fullname: Lijun Qian
  email: liqian@pvamu.edu
  organization: Center of Excellence in Res. & Educ. for Big Mil. Data Intell., Prairie View A&M Univ., Prairie View, TX, USA
– sequence: 3
  surname: Lei Huang
  fullname: Lei Huang
  email: lhuang@pvamu.edu
  organization: Center of Excellence in Res. & Educ. for Big Mil. Data Intell., Prairie View A&M Univ., Prairie View, TX, USA
BookMark eNotkEFOwzAQRQ0CiVJ6Alj4AikzcWzH7EoEpaK0SMCCVeXETmvUOJUdFtweI6ovzazm6c2_JGe-95aQG4QpIqjb-8W8Wr-8TnNAOZVliTIXJ2SiZIkcFDBALk7JKGeSZ4pxcUEmMX4BACqhcgkj8vm268OQDTZ0dN9rQ9s-2EbHwfktdZ7GToeBboMzd3RGm76rnbeGVqsV1d7Q56yz2kfa7L9jYvwd6cMh9LrZXZHzVu-jnRz3mHw8PrxXT9lyPV9Us2Xm8gKHLI0yF0a3NbctcCasQGzrIgnqukDdJptGcKiNSF8YxVFJVkOK4ow3nI3J9T_XWWs3h-CS8c_mWAb7Be85VQA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BIGCOMP.2017.7881726
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509030156
1509030158
EISSN 2375-9356
EndPage 125
ExternalDocumentID 7881726
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-241826dafb5ef0536e611fb4969ab41afecac650bd6375d951973b0b0b9535c53
IEDL.DBID RIE
IngestDate Wed Aug 27 02:13:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-241826dafb5ef0536e611fb4969ab41afecac650bd6375d951973b0b0b9535c53
PageCount 7
ParticipantIDs ieee_primary_7881726
PublicationCentury 2000
PublicationDate 2017-02
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02
PublicationDecade 2010
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 2.0593605
Snippet Although many methods are available to forecast short-term electricity load based on small scale data sets, they may not be able to accommodate large data sets...
SourceID ieee
SourceType Publisher
StartPage 119
SubjectTerms Big Data Analytics
Convolutional Neural Network
Data models
Forecasting
Load forecasting
Load modeling
Machine Learning
Predictive models
Short-term Load Forecasting
Testing
Training
Title Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach
URI https://ieeexplore.ieee.org/document/7881726
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7t2Njabt6UiKgBSZQET6RdWyXCMLBd_Ot93QZE48EsWZYlTZfXdu-99vu-h9CFlKFgxuUkjg0nQUAFgTQiIIEMtdBUeVxaNnJ_wHqj4GFMxxV0ueHCaK1z8Jl27GN-lq8WcWa3ylpW-py3WRVVecgKrtZ2PyViUZu7JTvOc6PWzf1d56k_tPAt7pRNf9RQyV1It476684L5MiHk6XSib9-6TL-9-t2UXNL1sPDjRvaQxWd7KP6uloDLhdvA70-v0OoTeyvGM8WQmEIV3UsVhb3jKcJXs1hFuG35VRd4WsMExFyZq1wZzDAIlH4kcw1uDUczzKrrWAbrfXIm2jUvX3p9EhZWIFMwWGnBG6QVShhJNUGViHTzPOMDMCEQgaeMNB7DKGbVMznVEWW3OpLF66I-jSm_gGqJYtEHyIs_IhJ19DACEisFAtd4RolQ9_4qq2YOUINa6nJZ6GdMSmNdPz36xO0Y0erQEWfolq6zPQZOP1Unuej_Q0OBK1s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BoYWNtx7wpEUEYkgiJnki7tkqEYWC7-Nf7CgOi8WCWLMuSrstru_de933fQ-hKyprgxvFJFBmfUMoEgTSCEiprWmimXF9aNnLY5c0BfXxhLzl0vebCaK0X4DNdtpeLf_lqGqV2q6xipc_9Kt9C24zCY5dsrc2OSsCDqu9k_DjXCSp3rYf6U9izAC6_nDX-UUVl4UQaBRSuul9iRz7KaSLL0dcvZcb_vt8eKm3oeri3dkT7KKfjA1RY1WvA2fItotfndwi2if0Y4_FUKAwBq47E3CKf8SjG8wnMI_w2G6kbfIthKkLWrBWud7tYxAq3yUSDY8PROLXqCrbRSpG8hAaN-369SbLSCmQELjshcIK8QgkjmTawDrnmrmskBRMKSV1hoPcIgjepuOczFVh6qycdOALmsYh5hygfT2N9hLDwAi4dw6gRkFopXnOEY5SsecZTVcXNMSpaSw0_l-oZw8xIJ3_fvkQ7zX7YGXZa3fYp2rUjt8RIn6F8Mkv1OYQAibxYjPw3UX6wuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=Short-term+load+forecasting+in+smart+grid%3A+A+combined+CNN+and+K-means+clustering+approach&rft.au=Xishuang+Dong&rft.au=Lijun+Qian&rft.au=Lei+Huang&rft.date=2017-02-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1109%2FBIGCOMP.2017.7881726&rft.externalDocID=7881726