Hardware-efficient robust biometric identification from 0.58 second template and 12 features of limb (Lead I) ECG signal using logistic regression classifier

The electrocardiogram (ECG), widely known as a cardiac diagnostic signal, has recently been proposed for biometric identification of individuals; however reliability and reproducibility are of research interest. In this paper, we propose a template matching technique with 12 features using logistic...

Full description

Saved in:
Bibliographic Details
Published in2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2014; pp. 1440 - 1443
Main Authors Sahadat, Md Nazmus, Jacobs, Eddie L., Morshed, Bashir I.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2014
Subjects
Online AccessGet full text
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2014.6943871

Cover

Abstract The electrocardiogram (ECG), widely known as a cardiac diagnostic signal, has recently been proposed for biometric identification of individuals; however reliability and reproducibility are of research interest. In this paper, we propose a template matching technique with 12 features using logistic regression classifier that achieved high reliability and identification accuracy. Non-invasive ECG signals were captured using our custom-built ambulatory EEG/ECG embedded device (NeuroMonitor). ECG data were collected from healthy subjects (10), between 25-35 years, for 10 seconds per trial. The number of trials from each subject was 10. From each trial, only 0.58 seconds of Lead I ECG data were used as template. Hardware-efficient fiducial point detection technique was implemented for feature extraction. To obtain repeated random sub-sampling validation, data were randomly separated into training and testing sets at a ratio of 80:20. Test data were used to find the classification accuracy. ECG template data with 12 extracted features provided the best performance in terms of accuracy (up to 100%) and processing complexity (computation time of 1.2ms). This work shows that a single limb (Lead I) ECG can robustly identify an individual quickly and reliably with minimal contact and data processing using the proposed algorithm.
AbstractList The electrocardiogram (ECG), widely known as a cardiac diagnostic signal, has recently been proposed for biometric identification of individuals; however reliability and reproducibility are of research interest. In this paper, we propose a template matching technique with 12 features using logistic regression classifier that achieved high reliability and identification accuracy. Non-invasive ECG signals were captured using our custom-built ambulatory EEG/ECG embedded device (NeuroMonitor). ECG data were collected from healthy subjects (10), between 25-35 years, for 10 seconds per trial. The number of trials from each subject was 10. From each trial, only 0.58 seconds of Lead I ECG data were used as template. Hardware-efficient fiducial point detection technique was implemented for feature extraction. To obtain repeated random sub-sampling validation, data were randomly separated into training and testing sets at a ratio of 80:20. Test data were used to find the classification accuracy. ECG template data with 12 extracted features provided the best performance in terms of accuracy (up to 100%) and processing complexity (computation time of 1.2ms). This work shows that a single limb (Lead I) ECG can robustly identify an individual quickly and reliably with minimal contact and data processing using the proposed algorithm.
Author Jacobs, Eddie L.
Morshed, Bashir I.
Sahadat, Md Nazmus
Author_xml – sequence: 1
  givenname: Md Nazmus
  surname: Sahadat
  fullname: Sahadat, Md Nazmus
  email: mnshadat@memphis.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Memphis, Memphis, TN, USA
– sequence: 2
  givenname: Eddie L.
  surname: Jacobs
  fullname: Jacobs, Eddie L.
  email: eljacobs@memphis.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Memphis, Memphis, TN, USA
– sequence: 3
  givenname: Bashir I.
  surname: Morshed
  fullname: Morshed, Bashir I.
  email: bmorshed@memphis.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Memphis, Memphis, TN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25570239$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtKAzEUhiNUtGofQAQ5S11MzW0mzVJLtYWKGwV3kklOSmQuJUkRH8Z3dcTq6lz-7_wH_hMy6voOCTlndMoY1TeLx7v5lFMmp5WWYqbYATlhkkupNNd0RMYDJItqpl6PySSld0opU1XFRXlEjnlZKsqFHpOvpYnuw0Qs0PtgA3YZYl_vUoY69C3mGCwEN6zDIJsc-g587Fug03IGCW3fOcjYbhuTEcwwMA4eTd5FTNB7aEJbw9UajYPVNSzmD5DCpjMN7FLoNtD0m5Dy8CPiZrhIP_62MUPjA8YzcuhNk3Cyr6fk5X7xPF8W66eH1fx2XQQuWC6045Zz6SuvJHpVU02p8E5J4wSvHLM1VsLWnGMpnNa2tNy4mbOKVsyLUolTcvnru93VLbq3bQytiZ9vfzkNwMUvEBDxX94nL74B2YV4QQ
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/EMBC.2014.6943871
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424479290
9781424479290
EndPage 1443
ExternalDocumentID 25570239
6943871
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
CGR
CUY
CVF
ECM
EIF
IPLJI
NPM
ID FETCH-LOGICAL-i231t-9d2c224f6f74ef7b09003fd74ad326d1cbe63cb22e53d99c5c2ad8dc7061f3573
IEDL.DBID RIE
ISSN 1094-687X
1557-170X
IngestDate Thu Jan 02 22:14:56 EST 2025
Wed Aug 27 04:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i231t-9d2c224f6f74ef7b09003fd74ad326d1cbe63cb22e53d99c5c2ad8dc7061f3573
PMID 25570239
PageCount 4
ParticipantIDs pubmed_primary_25570239
ieee_primary_6943871
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766235
ssj0020051
ssj0061641
Score 2.0324662
Snippet The electrocardiogram (ECG), widely known as a cardiac diagnostic signal, has recently been proposed for biometric identification of individuals; however...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1440
SubjectTerms Adult
Algorithms
Biometric Identification - methods
Computers
Cooperative communication
Cooperative systems
Diversity methods
Electrocardiography - methods
Electrodes
Female
Humans
Logistic Models
Male
Principal Component Analysis
Protocols
Relays
Signal Processing, Computer-Assisted
Time Factors
Turbo codes
Title Hardware-efficient robust biometric identification from 0.58 second template and 12 features of limb (Lead I) ECG signal using logistic regression classifier
URI https://ieeexplore.ieee.org/document/6943871
https://www.ncbi.nlm.nih.gov/pubmed/25570239
Volume 2014
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUop_ZSCrQsBTSHHkBqQtZx4uTa1fJRaSsOIO0NxZ4xWrHdrbJZIfFf-l_xOGEXIQ7cYkVxEo-leZ6Z90aIHx41kPeyKiqkdZFCzKIqJW4Zlmjbd0ZayQTn0Z_84kb9HmfjDfFzxYUholB8RjFfhlw-zu2SQ2WneanSggnjH7QuW67WOp6ic-_J1zp7vNtCprNUUV7ocZfR9OPT4ejXgIu6VNxNyIrALEUluWV4aLLyCmQGZ3P2WYyeP7OtMbmPl42J7eMrBcf3_seW2F3T-uBq5bC-iA2abYtPLxQJd8R_zuQ_VDVFFLQl_DxQz81y0UAg6rOeP0ywKzEKVgVmqEASZwUs-HSNwHJXU49hofKDvgRHQT10AXMH08lfA8fc2BMuT2A4OAeuIKmmwAX4d9ASkvw7arprK3RnYBng-9dRvStuzobXg4uo6-AQTTxubKISva2lcrnTipw2CcdNHWpVoYeN2LeG8tQaKSlLsSxtZmWFBVrtUYZLM51-FZuz-Yz2BKDU2DeshubPUJXLueVWgjkmSqE_ZWc9scMLffuvFem47da4J761hlzdeLb0_tsPfBcfeWu0UZYDsdnUSzr0uKMxR2HDPQHEFtMx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEF0heqC90AJtoR_MoYdWqo2zXnvta6PQQAnqAaTcIu_OLooaEuQ4QuK_9L92Zm2SCvXQm1eW1_bOSvNmZ94bIT4RanDkZVVUSOsjhZhFVeq4ZViibc8baSUTnEeX-fBanY-z8Zb4uubCOOdC8ZmL-TLk8nFhV3xUdpKXKi2YMP4so6hCt2ytzYmKzsmXb5T2eL-FXGeporzQ4y6nSeOTwehbn8u6VNxNyZrALEYluWl4aLPyBGYGd3O6K0aPH9pWmfyKV42J7cMTDcf__ZOX4mBD7IOfa5f1Smy5-Z548Zcm4b74zbn8-6p2kQvqEjQP1AuzWjYQqPqs6A9T7IqMgl2BOSqQxFkBS46vEVjwakYoFioa9CR4F_RDl7DwMJveGvjMrT3h7AsM-t-Ba0iqGXAJ_g20lCR6R-1u2hrdOViG-PQ6Vx-I69PBVX8YdT0coikhxyYqkawtlc-9Vs5rk_DJqUetKiTgiD1rXJ5aI6XLUixLm1lZYYFWE87waabT12J7vpi7twJQauwZ1kOjKKryOTfdSjDHRCmkODs7FPu80JO7VqZj0q3xoXjTGnJ949HSR_9-4FjsDK9GF5OLs8sf78Rz3ibtmct7sd3UK_eBUEhjPobN9wcItdaC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+36th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Hardware-efficient+robust+biometric+identification+from+0.58+second+template+and+12+features+of+limb+%28Lead+I%29+ECG+signal+using+logistic+regression+classifier&rft.au=Sahadat%2C+Md+Nazmus&rft.au=Jacobs%2C+Eddie+L.&rft.au=Morshed%2C+Bashir+I.&rft.date=2014-01-01&rft.pub=IEEE&rft.issn=1094-687X&rft.spage=1440&rft.epage=1443&rft_id=info:doi/10.1109%2FEMBC.2014.6943871&rft_id=info%3Apmid%2F25570239&rft.externalDocID=6943871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-687X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-687X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-687X&client=summon