AnaFe: Visual Analytics of Image-derived Temporal Features-Focusing on the Spleen
We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked vie...
        Saved in:
      
    
          | Published in | IEEE transactions on visualization and computer graphics Vol. 23; no. 1; pp. 171 - 180 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1077-2626 1941-0506 1941-0506  | 
| DOI | 10.1109/TVCG.2016.2598463 | 
Cover
| Abstract | We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time. | 
    
|---|---|
| AbstractList | We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time.We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time. We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time.  | 
    
| Author | Dmitriev, Konstantin Gutenko, Ievgeniia Kaufman, Arie E. Barish, Matthew A.  | 
    
| Author_xml | – sequence: 1 givenname: Ievgeniia surname: Gutenko fullname: Gutenko, Ievgeniia email: igutenko@cs.stonybrook.edu organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA – sequence: 2 givenname: Konstantin surname: Dmitriev fullname: Dmitriev, Konstantin email: kdmitriev@cs.stonybrook.edu organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA – sequence: 3 givenname: Arie E. surname: Kaufman fullname: Kaufman, Arie E. email: ari@cs.stonybrook.edu organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA – sequence: 4 givenname: Matthew A. surname: Barish fullname: Barish, Matthew A. email: matthew.barish@stonybrookmedicine.edu organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27514050$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNo90MtKw0AUBuBBKvaiDyCCzNJN6twz464UUwsFEWu3YTo5qSO5mUmEvr2BVlfn9vEvzhSNqroChG4pmVNKzON2t1zNGaFqzqTRQvELNKFG0IhIokZDT-I4YoqpMZqG8EUIFUKbKzRmsaRiQBP0tqhsAk9450NvCzxMxbHzLuA6x-vSHiDKoPU_kOEtlE3dDiYB2_UthCipXR98dcB1hbtPwO9NAVBdo8vcFgFuznWGPpLn7fIl2ryu1svFJvKM0y6SNoa91E5TpSBmiuTGSWooJ2BZ5oatA0VjZ6zOuMhkTAjkzomcS8Z1JvkMPZxym7b-7iF0aemDg6KwFdR9SKkWfIjTxgz0_kz7fQlZ2rS-tO0x_XvDAO5OwAPA_zmWXGhB-S8pqmjo | 
    
| CODEN | ITVGEA | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE NPM 7X8  | 
    
| DOI | 10.1109/TVCG.2016.2598463 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0506 | 
    
| EndPage | 180 | 
    
| ExternalDocumentID | 27514050 7534841  | 
    
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: NSF grantid: CNS-0959979; IIP1069147; CNS-1302246 funderid: 10.13039/100000001 – fundername: Marcus Foundation – fundername: Center of Excellence for Wireless and Information Technology (CEWIT)  | 
    
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK NPM PKN RIC RIG Z5M 7X8  | 
    
| ID | FETCH-LOGICAL-i231t-5a7eb58c8166e7260f9c519130ea2dc166ce617c9a8d34d5700efcc4f35238d53 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1077-2626 1941-0506  | 
    
| IngestDate | Thu Oct 02 05:29:51 EDT 2025 Wed Feb 19 02:44:32 EST 2025 Wed Aug 27 02:47:56 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i231t-5a7eb58c8166e7260f9c519130ea2dc166ce617c9a8d34d5700efcc4f35238d53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 27514050 | 
    
| PQID | 1843913899 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | ieee_primary_7534841 pubmed_primary_27514050 proquest_miscellaneous_1843913899  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-Jan. 2017-01-00 20170101  | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-Jan.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE transactions on visualization and computer graphics | 
    
| PublicationTitleAbbrev | TVCG | 
    
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0014489 | 
    
| Score | 2.209578 | 
    
| Snippet | We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate... | 
    
| SourceID | proquest pubmed ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 171 | 
    
| SubjectTerms | Abdominal Imaging Data visualization Diseases Imaging Radiomics Shape Spleen Temporal Feature Analysis Visual analytics Visual Knowledge Discovery Volume measurement  | 
    
| Title | AnaFe: Visual Analytics of Image-derived Temporal Features-Focusing on the Spleen | 
    
| URI | https://ieeexplore.ieee.org/document/7534841 https://www.ncbi.nlm.nih.gov/pubmed/27514050 https://www.proquest.com/docview/1843913899  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JS8NAFICH2pMe3OpSN0bw6NSaTCaJt1KsVaggtqW3Mpl5gaImxSYe_PW-l6RFRMFbCJNtZsj73s7YBUpYpSOpBcRtFxUU44hISSt8rVQkITRQ9DocPKr-SD5MvEmNXa5yYQCgCD6DFh0WvnybmpxMZVeI1jKgLPU1P1BlrtbKY4BqRljGF_rCQUqvPJjX7fBqOO7eURCXaiHro7yl3jmOj6TQpmz7oqnK33xZyJneFhss37AML3lp5VnUMp8_ijf-9xO22WYFnLxT7pAdVoNkl218K0PYYE-dRPfgho9ni5yGUp0Sqt7M05jfv-EPR1gc-QGWD8tCVq-cyDFHTV308JFkbuBpwpEl-fOcYjP22Kh3O-z2RdVqQcwQ8DLhaR8iLzDkRQQfdZw4NMh2KOBAO9bgWQPIOibUgXWlpaL4EBsjY-Q3N7Ceu8_qSZrAIeMyCqxFsgAbx1LZdqQof1W6rq8N6kq2yRo0LdN5WU1jWs1Ik50vV2CKO5zcFjqBNF9MqSNNSP7UsMkOyqVZXbxcxqPfb3rM1h0Sw4XJ5ITVs_ccThEisuis2D1f7XXBuA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JS8NAFIAfogf14L7UdQSPTq3JZPMmxdpqK4iteAuTmRcoaiLaePDX-17SFhEFbyFMtpkh73s7wDFJWF8nSktMGy4pKMaRia-sDLTvJwojg2Wvw96t3x6o60fvcQZOprkwiFgGn2GdD0tfvs1NwaayU0JrFXKW-pynlPKqbK2pz4AUjaiKMAykQ5w-9mGeNaLT_kPzisO4_DrRPklc7p7jBMQKDc63L9uq_E2YpaRpLUNv8o5VgMlTvRgldfP5o3zjfz9iBZbGyCkuqj2yCjOYrcHit0KE63B3kekWnouH4XvBQ7lSCddvFnkqOi_0y5GWRn6gFf2qlNWzYHYsSFeXLXokGxxEngmiSXH_ytEZGzBoXfabbTlutiCHhHgj6ekAEy807EfEgLScNDJEdyTiUDvW0FmDRDsm0qF1leWy-Jgao1IiODe0nrsJs1me4TYIlYTWElugTVPl20bicwarct1AG9KWbA3WeVri16qeRjyekRocTVYgpj3OjgudYV68x9yTJmKPalSDrWppphdPlnHn95sewny73-vG3c7tzS4sOCyUSwPKHsyO3grcJ6QYJQflTvoCQrXFBQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AnaFe%3A+Visual+Analytics+of+Image-derived+Temporal+Features-Focusing+on+the+Spleen&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Gutenko%2C+Ievgeniia&rft.au=Dmitriev%2C+Konstantin&rft.au=Kaufman%2C+Arie+E.&rft.au=Barish%2C+Matthew+A.&rft.date=2017-01-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=23&rft.issue=1&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1109%2FTVCG.2016.2598463&rft_id=info%3Apmid%2F27514050&rft.externalDocID=7534841 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |