AnaFe: Visual Analytics of Image-derived Temporal Features-Focusing on the Spleen

We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked vie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 23; no. 1; pp. 171 - 180
Main Authors Gutenko, Ievgeniia, Dmitriev, Konstantin, Kaufman, Arie E., Barish, Matthew A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2017
Subjects
Online AccessGet full text
ISSN1077-2626
1941-0506
1941-0506
DOI10.1109/TVCG.2016.2598463

Cover

Abstract We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time.
AbstractList We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time.We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time.
We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate monitoring of progressive changes is crucial for diseases that result in enlargement of the organ. Our system is comprised of multiple linked views combining visualization of temporal 3D organ data, related measurements, and features. Thus it enables the observation of progression and allows for simultaneous comparison within and between the subjects. AnaFe offers insights into the overall distribution of robustly extracted and reproducible quantitative imaging features and their changes within the population, and also enables detailed analysis of individual cases. It performs similarity comparison of temporal series of one subject to all other series in both sick and healthy groups. We demonstrate our system through two use case scenarios on a population of 189 spleen datasets from 68 subjects with various conditions observed over time.
Author Dmitriev, Konstantin
Gutenko, Ievgeniia
Kaufman, Arie E.
Barish, Matthew A.
Author_xml – sequence: 1
  givenname: Ievgeniia
  surname: Gutenko
  fullname: Gutenko, Ievgeniia
  email: igutenko@cs.stonybrook.edu
  organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA
– sequence: 2
  givenname: Konstantin
  surname: Dmitriev
  fullname: Dmitriev, Konstantin
  email: kdmitriev@cs.stonybrook.edu
  organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA
– sequence: 3
  givenname: Arie E.
  surname: Kaufman
  fullname: Kaufman, Arie E.
  email: ari@cs.stonybrook.edu
  organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA
– sequence: 4
  givenname: Matthew A.
  surname: Barish
  fullname: Barish, Matthew A.
  email: matthew.barish@stonybrookmedicine.edu
  organization: Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27514050$$D View this record in MEDLINE/PubMed
BookMark eNo90MtKw0AUBuBBKvaiDyCCzNJN6twz464UUwsFEWu3YTo5qSO5mUmEvr2BVlfn9vEvzhSNqroChG4pmVNKzON2t1zNGaFqzqTRQvELNKFG0IhIokZDT-I4YoqpMZqG8EUIFUKbKzRmsaRiQBP0tqhsAk9450NvCzxMxbHzLuA6x-vSHiDKoPU_kOEtlE3dDiYB2_UthCipXR98dcB1hbtPwO9NAVBdo8vcFgFuznWGPpLn7fIl2ryu1svFJvKM0y6SNoa91E5TpSBmiuTGSWooJ2BZ5oatA0VjZ6zOuMhkTAjkzomcS8Z1JvkMPZxym7b-7iF0aemDg6KwFdR9SKkWfIjTxgz0_kz7fQlZ2rS-tO0x_XvDAO5OwAPA_zmWXGhB-S8pqmjo
CODEN ITVGEA
ContentType Journal Article
DBID 97E
RIA
RIE
NPM
7X8
DOI 10.1109/TVCG.2016.2598463
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 180
ExternalDocumentID 27514050
7534841
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: CNS-0959979; IIP1069147; CNS-1302246
  funderid: 10.13039/100000001
– fundername: Marcus Foundation
– fundername: Center of Excellence for Wireless and Information Technology (CEWIT)
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
NPM
PKN
RIC
RIG
Z5M
7X8
ID FETCH-LOGICAL-i231t-5a7eb58c8166e7260f9c519130ea2dc166ce617c9a8d34d5700efcc4f35238d53
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Oct 02 05:29:51 EDT 2025
Wed Feb 19 02:44:32 EST 2025
Wed Aug 27 02:47:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i231t-5a7eb58c8166e7260f9c519130ea2dc166ce617c9a8d34d5700efcc4f35238d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27514050
PQID 1843913899
PQPubID 23479
PageCount 10
ParticipantIDs ieee_primary_7534841
pubmed_primary_27514050
proquest_miscellaneous_1843913899
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014489
Score 2.209578
Snippet We present a novel visualization framework, AnaFe, targeted at observing changes in the spleen over time through multiple image-derived features. Accurate...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 171
SubjectTerms Abdominal Imaging
Data visualization
Diseases
Imaging
Radiomics
Shape
Spleen
Temporal Feature Analysis
Visual analytics
Visual Knowledge Discovery
Volume measurement
Title AnaFe: Visual Analytics of Image-derived Temporal Features-Focusing on the Spleen
URI https://ieeexplore.ieee.org/document/7534841
https://www.ncbi.nlm.nih.gov/pubmed/27514050
https://www.proquest.com/docview/1843913899
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JS8NAFICH2pMe3OpSN0bw6NSaTCaJt1KsVaggtqW3Mpl5gaImxSYe_PW-l6RFRMFbCJNtZsj73s7YBUpYpSOpBcRtFxUU44hISSt8rVQkITRQ9DocPKr-SD5MvEmNXa5yYQCgCD6DFh0WvnybmpxMZVeI1jKgLPU1P1BlrtbKY4BqRljGF_rCQUqvPJjX7fBqOO7eURCXaiHro7yl3jmOj6TQpmz7oqnK33xZyJneFhss37AML3lp5VnUMp8_ijf-9xO22WYFnLxT7pAdVoNkl218K0PYYE-dRPfgho9ni5yGUp0Sqt7M05jfv-EPR1gc-QGWD8tCVq-cyDFHTV308JFkbuBpwpEl-fOcYjP22Kh3O-z2RdVqQcwQ8DLhaR8iLzDkRQQfdZw4NMh2KOBAO9bgWQPIOibUgXWlpaL4EBsjY-Q3N7Ceu8_qSZrAIeMyCqxFsgAbx1LZdqQof1W6rq8N6kq2yRo0LdN5WU1jWs1Ik50vV2CKO5zcFjqBNF9MqSNNSP7UsMkOyqVZXbxcxqPfb3rM1h0Sw4XJ5ITVs_ccThEisuis2D1f7XXBuA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JS8NAFIAfogf14L7UdQSPTq3JZPMmxdpqK4iteAuTmRcoaiLaePDX-17SFhEFbyFMtpkh73s7wDFJWF8nSktMGy4pKMaRia-sDLTvJwojg2Wvw96t3x6o60fvcQZOprkwiFgGn2GdD0tfvs1NwaayU0JrFXKW-pynlPKqbK2pz4AUjaiKMAykQ5w-9mGeNaLT_kPzisO4_DrRPklc7p7jBMQKDc63L9uq_E2YpaRpLUNv8o5VgMlTvRgldfP5o3zjfz9iBZbGyCkuqj2yCjOYrcHit0KE63B3kekWnouH4XvBQ7lSCddvFnkqOi_0y5GWRn6gFf2qlNWzYHYsSFeXLXokGxxEngmiSXH_ytEZGzBoXfabbTlutiCHhHgj6ekAEy807EfEgLScNDJEdyTiUDvW0FmDRDsm0qF1leWy-Jgao1IiODe0nrsJs1me4TYIlYTWElugTVPl20bicwarct1AG9KWbA3WeVri16qeRjyekRocTVYgpj3OjgudYV68x9yTJmKPalSDrWppphdPlnHn95sewny73-vG3c7tzS4sOCyUSwPKHsyO3grcJ6QYJQflTvoCQrXFBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AnaFe%3A+Visual+Analytics+of+Image-derived+Temporal+Features-Focusing+on+the+Spleen&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Gutenko%2C+Ievgeniia&rft.au=Dmitriev%2C+Konstantin&rft.au=Kaufman%2C+Arie+E.&rft.au=Barish%2C+Matthew+A.&rft.date=2017-01-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=23&rft.issue=1&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1109%2FTVCG.2016.2598463&rft_id=info%3Apmid%2F27514050&rft.externalDocID=7534841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon