An Efficient Ocular Disease Recognition System Implementation using GLCM and LBP based Multilayer Perception Algorithm

This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes, glaucoma, cataract, normal, hypertension, age-related macular degeneration, pathological myopia, and other diseases/abnormalities. A Neural...

Full description

Saved in:
Bibliographic Details
Published inIEEE Mediterranean Electrotechnical Conference pp. 978 - 983
Main Authors Mampitiya, Lakindu Induwara, Rathnayake, Namal
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 14.06.2022
Subjects
Online AccessGet full text
ISSN2158-8481
DOI10.1109/MELECON53508.2022.9843023

Cover

Abstract This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes, glaucoma, cataract, normal, hypertension, age-related macular degeneration, pathological myopia, and other diseases/abnormalities. A Neural Network is used for the classification of diseases. In addition, the GLCM and LBP feature extracting methods have been used to carry out the feature extraction for the fundus images. This study compares five different ocular disease recognizing techniques. Moreover, the proposed model was evaluated regarding precision, recall, and accuracy. The proposed solution outperformed existing state-of-the-art algorithms, achieving 99.58% accuracy.
AbstractList This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes, glaucoma, cataract, normal, hypertension, age-related macular degeneration, pathological myopia, and other diseases/abnormalities. A Neural Network is used for the classification of diseases. In addition, the GLCM and LBP feature extracting methods have been used to carry out the feature extraction for the fundus images. This study compares five different ocular disease recognizing techniques. Moreover, the proposed model was evaluated regarding precision, recall, and accuracy. The proposed solution outperformed existing state-of-the-art algorithms, achieving 99.58% accuracy.
Author Mampitiya, Lakindu Induwara
Rathnayake, Namal
Author_xml – sequence: 1
  givenname: Lakindu Induwara
  surname: Mampitiya
  fullname: Mampitiya, Lakindu Induwara
  email: lakinduinduwara21@gmail.com
  organization: Sri Lanka Institute of Information Technology,Department of Electrical and Electronic,Malabe,Sri Lanka
– sequence: 2
  givenname: Namal
  surname: Rathnayake
  fullname: Rathnayake, Namal
  email: namalhappy@gmail.com
  organization: Kochi University of Technology,School of Systems Engineering,Kochi,Japan
BookMark eNotkNtOwkAYhFejiYg8gTfrA4D_HtleYq1IUoR4uCbb5V9c025JW0x4exvkapLJN5PM3JKrWEck5IHBhDFIHpdZnqWrNyUUmAkHzieJkQK4uCCjZGqY1kpKbgAuyYAzZcZGGnZDRm37AwB9g06EGpDfWaSZ98EFjB1duUNpG_ocWrQt0nd09S6GLtSRfhzbDiu6qPYlVj1rT-6hDXFH53m6pDZuaf60pkWf3NLloexCaY_Y0DU2DvcnfFbu6iZ039Udufa2bHF01iH5esk-09dxvpov0lk-DpybbryVoKQz0hqDuhCJVywRUw1oQQlXFD6RXmjezy-EAz_1zFkGvOctt4XWYkju_3sDIm72Tahsc9ycnxJ_LM1gzw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/MELECON53508.2022.9843023
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665442800
1665442808
EISSN 2158-8481
EndPage 983
ExternalDocumentID 9843023
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i228t-d4054c84a88e6b39f5193760ea053cbbf94f362202b3c0f7f1ca1024a8a2ab663
IEDL.DBID RIE
IngestDate Wed Aug 27 02:24:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i228t-d4054c84a88e6b39f5193760ea053cbbf94f362202b3c0f7f1ca1024a8a2ab663
PageCount 6
ParticipantIDs ieee_primary_9843023
PublicationCentury 2000
PublicationDate 2022-06-14
PublicationDateYYYYMMDD 2022-06-14
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-14
  day: 14
PublicationDecade 2020
PublicationTitle IEEE Mediterranean Electrotechnical Conference
PublicationTitleAbbrev MELECON
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096935
Score 1.8006725
Snippet This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes,...
SourceID ieee
SourceType Publisher
StartPage 978
SubjectTerms Cataracts
Classification
Conferences
Feature extraction
Fundus
GLCM
Hypertension
LBP
MLP
Neural networks
Nonhomogeneous media
Ocular
Pathology
Title An Efficient Ocular Disease Recognition System Implementation using GLCM and LBP based Multilayer Perception Algorithm
URI https://ieeexplore.ieee.org/document/9843023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ag_GkBoy_UxOPbuxHu61HRJAYpsRIwo20XYtE2AwZHvzrfd0GROPB29KsSfNetve1_b7vIXTjEC2iMNKWZi63iEyUxQWlliIC0IiQwqVGKBw_BYMxeZzQSQ3dbrUwSqmCfKZs81jc5SeZXJujsjaLiOlxU0f1MApKrdbuPAWwOPPpHrqubDTbcW9omgFSHzAIbAQ9z67m_2ikUtSR_gGKNyso6SPv9joXtvz6Zc743yUeotZOsYdH21p0hGoqbaLPTop7hUUEzMHPBeMU35c3MvhlwxzKUlzaluPCKXhZiZFSbCjxM_ww7MaYpwke3o2wqXkJLkS7Cw5gHY-2vBjcWcyy1Tx_W7bQuN977Q6sqs-CNfe8KLcSAG1ERoRHkQqEz7RBdWHgKA5fqBRCM6KhzkEIhS8dHWpXcsAl8D73uADIcowaaZaqE4SZkp5DqWCBxwhkmrkQEBGwkAUSfiXOKWqamE0_SiuNaRWus7-Hz9G-yZthZrnkAjXy1VpdAgbIxVWR_G9WArH6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QE_WkBoy_rYlHN7bRjvWICKJuSAwk3EjbdUiEzZDhwb_er9uAaDx4W5Z1ab62-97a996H0I1FIuE1vMiImM0NIkNlcEGpoYgANCKksKkWCgc9tzskTyM6KqHbtRZGKZWRz5SpL7Oz_DCRS71VVmMe0TVuttA2JYTQXK212VEBNM7qdAddF0aataDt63KAtA4oBH4FHccs3vCjlEqWSTr7KFj1ISeQvJvLVJjy65c94387eYCqG80e7q-z0SEqqbiCPpsxbmcmEdAGv2ScU3yfn8ng1xV3KIlxblyOM6_geSFHirEmxU_wg98KMI9D7N_1sc56Ic5kuzMOcB3318wY3JxNksU0fZtX0bDTHrS6RlFpwZg6jpcaIcA2Ij3CPU-5os4ijesarqU4rFEpRMRIBJkOQijq0ooakS05IBN4njtcAGg5QuU4idUxwkxJx6JUMNdhBMaa2RAQ4bIGcyV8TKwTVNExG3_kZhrjIlynf9--QrvdQeCP_cfe8xna02OoeVo2OUfldLFUF4AIUnGZTYRv1h21Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=An+Efficient+Ocular+Disease+Recognition+System+Implementation+using+GLCM+and+LBP+based+Multilayer+Perception+Algorithm&rft.au=Mampitiya%2C+Lakindu+Induwara&rft.au=Rathnayake%2C+Namal&rft.date=2022-06-14&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=978&rft.epage=983&rft_id=info:doi/10.1109%2FMELECON53508.2022.9843023&rft.externalDocID=9843023