An Efficient Ocular Disease Recognition System Implementation using GLCM and LBP based Multilayer Perception Algorithm
This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes, glaucoma, cataract, normal, hypertension, age-related macular degeneration, pathological myopia, and other diseases/abnormalities. A Neural...
Saved in:
| Published in | IEEE Mediterranean Electrotechnical Conference pp. 978 - 983 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English Japanese |
| Published |
IEEE
14.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2158-8481 |
| DOI | 10.1109/MELECON53508.2022.9843023 |
Cover
| Abstract | This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes, glaucoma, cataract, normal, hypertension, age-related macular degeneration, pathological myopia, and other diseases/abnormalities. A Neural Network is used for the classification of diseases. In addition, the GLCM and LBP feature extracting methods have been used to carry out the feature extraction for the fundus images. This study compares five different ocular disease recognizing techniques. Moreover, the proposed model was evaluated regarding precision, recall, and accuracy. The proposed solution outperformed existing state-of-the-art algorithms, achieving 99.58% accuracy. |
|---|---|
| AbstractList | This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes, glaucoma, cataract, normal, hypertension, age-related macular degeneration, pathological myopia, and other diseases/abnormalities. A Neural Network is used for the classification of diseases. In addition, the GLCM and LBP feature extracting methods have been used to carry out the feature extraction for the fundus images. This study compares five different ocular disease recognizing techniques. Moreover, the proposed model was evaluated regarding precision, recall, and accuracy. The proposed solution outperformed existing state-of-the-art algorithms, achieving 99.58% accuracy. |
| Author | Mampitiya, Lakindu Induwara Rathnayake, Namal |
| Author_xml | – sequence: 1 givenname: Lakindu Induwara surname: Mampitiya fullname: Mampitiya, Lakindu Induwara email: lakinduinduwara21@gmail.com organization: Sri Lanka Institute of Information Technology,Department of Electrical and Electronic,Malabe,Sri Lanka – sequence: 2 givenname: Namal surname: Rathnayake fullname: Rathnayake, Namal email: namalhappy@gmail.com organization: Kochi University of Technology,School of Systems Engineering,Kochi,Japan |
| BookMark | eNotkNtOwkAYhFejiYg8gTfrA4D_HtleYq1IUoR4uCbb5V9c025JW0x4exvkapLJN5PM3JKrWEck5IHBhDFIHpdZnqWrNyUUmAkHzieJkQK4uCCjZGqY1kpKbgAuyYAzZcZGGnZDRm37AwB9g06EGpDfWaSZ98EFjB1duUNpG_ocWrQt0nd09S6GLtSRfhzbDiu6qPYlVj1rT-6hDXFH53m6pDZuaf60pkWf3NLloexCaY_Y0DU2DvcnfFbu6iZ039Udufa2bHF01iH5esk-09dxvpov0lk-DpybbryVoKQz0hqDuhCJVywRUw1oQQlXFD6RXmjezy-EAz_1zFkGvOctt4XWYkju_3sDIm72Tahsc9ycnxJ_LM1gzw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/MELECON53508.2022.9843023 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665442800 1665442808 |
| EISSN | 2158-8481 |
| EndPage | 983 |
| ExternalDocumentID | 9843023 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i228t-d4054c84a88e6b39f5193760ea053cbbf94f362202b3c0f7f1ca1024a8a2ab663 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:24:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i228t-d4054c84a88e6b39f5193760ea053cbbf94f362202b3c0f7f1ca1024a8a2ab663 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9843023 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-14 |
| PublicationDateYYYYMMDD | 2022-06-14 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Mediterranean Electrotechnical Conference |
| PublicationTitleAbbrev | MELECON |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001096935 |
| Score | 1.8006725 |
| Snippet | This research study is focused on the classification of ocular diseases by referring to a well-known dataset. The data is divided into seven classes: diabetes,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 978 |
| SubjectTerms | Cataracts Classification Conferences Feature extraction Fundus GLCM Hypertension LBP MLP Neural networks Nonhomogeneous media Ocular Pathology |
| Title | An Efficient Ocular Disease Recognition System Implementation using GLCM and LBP based Multilayer Perception Algorithm |
| URI | https://ieeexplore.ieee.org/document/9843023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ag_GkBoy_UxOPbuxHu61HRJAYpsRIwo20XYtE2AwZHvzrfd0GROPB29KsSfNetve1_b7vIXTjEC2iMNKWZi63iEyUxQWlliIC0IiQwqVGKBw_BYMxeZzQSQ3dbrUwSqmCfKZs81jc5SeZXJujsjaLiOlxU0f1MApKrdbuPAWwOPPpHrqubDTbcW9omgFSHzAIbAQ9z67m_2ikUtSR_gGKNyso6SPv9joXtvz6Zc743yUeotZOsYdH21p0hGoqbaLPTop7hUUEzMHPBeMU35c3MvhlwxzKUlzaluPCKXhZiZFSbCjxM_ww7MaYpwke3o2wqXkJLkS7Cw5gHY-2vBjcWcyy1Tx_W7bQuN977Q6sqs-CNfe8KLcSAG1ERoRHkQqEz7RBdWHgKA5fqBRCM6KhzkEIhS8dHWpXcsAl8D73uADIcowaaZaqE4SZkp5DqWCBxwhkmrkQEBGwkAUSfiXOKWqamE0_SiuNaRWus7-Hz9G-yZthZrnkAjXy1VpdAgbIxVWR_G9WArH6 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QE_WkBoy_rYlHN7bRjvWICKJuSAwk3EjbdUiEzZDhwb_er9uAaDx4W5Z1ab62-97a996H0I1FIuE1vMiImM0NIkNlcEGpoYgANCKksKkWCgc9tzskTyM6KqHbtRZGKZWRz5SpL7Oz_DCRS71VVmMe0TVuttA2JYTQXK212VEBNM7qdAddF0aataDt63KAtA4oBH4FHccs3vCjlEqWSTr7KFj1ISeQvJvLVJjy65c94387eYCqG80e7q-z0SEqqbiCPpsxbmcmEdAGv2ScU3yfn8ng1xV3KIlxblyOM6_geSFHirEmxU_wg98KMI9D7N_1sc56Ic5kuzMOcB3318wY3JxNksU0fZtX0bDTHrS6RlFpwZg6jpcaIcA2Ij3CPU-5os4ijesarqU4rFEpRMRIBJkOQijq0ooakS05IBN4njtcAGg5QuU4idUxwkxJx6JUMNdhBMaa2RAQ4bIGcyV8TKwTVNExG3_kZhrjIlynf9--QrvdQeCP_cfe8xna02OoeVo2OUfldLFUF4AIUnGZTYRv1h21Rw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=An+Efficient+Ocular+Disease+Recognition+System+Implementation+using+GLCM+and+LBP+based+Multilayer+Perception+Algorithm&rft.au=Mampitiya%2C+Lakindu+Induwara&rft.au=Rathnayake%2C+Namal&rft.date=2022-06-14&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=978&rft.epage=983&rft_id=info:doi/10.1109%2FMELECON53508.2022.9843023&rft.externalDocID=9843023 |