Model-based compressive sensing for signal ensembles

Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we measure M ¿ N inner products with random vectors and then recover the signal via a sparsity-seeking optimization or greedy algorithm. A new fr...

Full description

Saved in:
Bibliographic Details
Published in2009 47th Annual Allerton Conference on Communication, Control, and Computing pp. 244 - 250
Main Authors Duarte, M.F., Cevher, V., Baraniuk, R.G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2009
Subjects
Online AccessGet full text
ISBN9781424458707
1424458706
DOI10.1109/ALLERTON.2009.5394807

Cover

Abstract Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we measure M ¿ N inner products with random vectors and then recover the signal via a sparsity-seeking optimization or greedy algorithm. A new framework for CS based on unions of subspaces can improve signal recovery by including dependencies between values and locations of the signal's significant coefficients. In this paper, we extend this framework to the acquisition of signal ensembles under a common sparse supports model. The new framework provides recovery algorithms with theoretical performance guarantees. Additionally, the framework scales naturally to large sensor networks: the number of measurements needed for each signal does not increase as the network becomes larger. Furthermore, the complexity of the recovery algorithm is only linear in the size of the network. We provide experimental results using synthetic and real-world signals that confirm these benefits.
AbstractList Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we measure M ¿ N inner products with random vectors and then recover the signal via a sparsity-seeking optimization or greedy algorithm. A new framework for CS based on unions of subspaces can improve signal recovery by including dependencies between values and locations of the signal's significant coefficients. In this paper, we extend this framework to the acquisition of signal ensembles under a common sparse supports model. The new framework provides recovery algorithms with theoretical performance guarantees. Additionally, the framework scales naturally to large sensor networks: the number of measurements needed for each signal does not increase as the network becomes larger. Furthermore, the complexity of the recovery algorithm is only linear in the size of the network. We provide experimental results using synthetic and real-world signals that confirm these benefits.
Author Duarte, M.F.
Cevher, V.
Baraniuk, R.G.
Author_xml – sequence: 1
  givenname: M.F.
  surname: Duarte
  fullname: Duarte, M.F.
  organization: Program in Appl. & Comput. Math., Princeton Univ., Princeton, NJ, USA
– sequence: 2
  givenname: V.
  surname: Cevher
  fullname: Cevher, V.
  organization: Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA
– sequence: 3
  givenname: R.G.
  surname: Baraniuk
  fullname: Baraniuk, R.G.
  organization: Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA
BookMark eNpVkF1LwzAUhiMqqLO_QIT-gdZ8Ns3lGHMK1YHM65AlpyOSpqOZyv69HZuC5-Zw3pfnXDw36CL2ERC6J7gkBKuHadPM31bL15JirErBFK-xPEOZkjXhlHNRS8LP_91YXqEspQ88DhdUMXKN-EvvIBRrk8Dltu-2A6TkvyBPEJOPm7zthzz5TTQhHxPo1gHSLbpsTUiQnfYEvT_OV7OnolkunmfTpvCU0l2hSEVl7cC0wEnFBHNAueCtra2EijnLKqMsJk5IKZUlVlFFuAQJzhlsHZug6vj3M27N_tuEoLeD78yw1wTrgwY9ZjDs-qgPGvRJwwjeHUEPAH_Mb_sDcuJcBw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/ALLERTON.2009.5394807
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781424458714
1424458714
EndPage 250
ExternalDocumentID oai:infoscience.tind.io:151475
5394807
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ADTOC
UNPAY
ID FETCH-LOGICAL-i222t-916278deafe416353de2454fc8c7e63dc36a9c01d57779c1c929147e7edda0cd3
IEDL.DBID UNPAY
ISBN 9781424458707
1424458706
IngestDate Tue Aug 19 09:21:03 EDT 2025
Wed Aug 27 02:44:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i222t-916278deafe416353de2454fc8c7e63dc36a9c01d57779c1c929147e7edda0cd3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/151475
PageCount 7
ParticipantIDs ieee_primary_5394807
unpaywall_primary_10_1109_allerton_2009_5394807
PublicationCentury 2000
PublicationDate 2009-Sept.
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-Sept.
PublicationDecade 2000
PublicationTitle 2009 47th Annual Allerton Conference on Communication, Control, and Computing
PublicationTitleAbbrev ALLERTON
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452931
Score 1.5594916
Snippet Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 244
SubjectTerms Algorithm design and analysis
Collaboration
Greedy algorithms
Mathematical model
Mathematics
Measurement standards
Robustness
Sampling methods
Signal generators
Signal processing
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AF_XiA4z4Sg8eLbS02909GgMhBtAYSLiR7e5gjLUQaDX6693tS2M8eOsj3XTapvPtzvd9A3AV6ikyMkfYbiC47TOH2IwobitPMsU1PiA5QXYSDGf-3ZzMa3BdaWEQMSOfYcdsZrV8tZKpWSrrEo8bBXQd6pQFuVarWk8x1uDcc0vtFjH1u9LSqdinhYLHdXj3ZjTqP07vJ7ljZTFw0WFlD3bSeC0-3kUU_Ug2g30Yl7eZc0xeOmkSduTnLwfH_8ZxAK1vWZ_1UCWsQ6hhfAR748q4ddsE3_RGi2yT25Rl6OYZTfYNra0husdPlsa4luF8iMjSR_A1jHDbgtmgP70d2kVjBftZw4FE_-CCHmUKxRINHiOewp5P_KVkkmLgKenpFycdVxFKKZeu1BjK9SlSVEo4UnnH0IhXMZ6AhdQXy0AyJ1y6fqhnKzq_udhTLGAaKaJoQ9PEv1jn3hmLIvQ2dKtHXJ3L5iMOX5gmMhuNfE2LTF5ecfr3QGewm9d3DOvrHBrJJsULDROS8DL7Pr4AJcG3GA
  priority: 102
  providerName: IEEE
Title Model-based compressive sensing for signal ensembles
URI https://ieeexplore.ieee.org/document/5394807
http://infoscience.epfl.ch/record/151475
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA66HcSLyiZOdOTgNVu7Jk1yFHEMD2MHB_M00uRVxVrH1in6631pu03wIF7TBMILvO975XvvI-QqwRIZVGBYGBvNuAoEU8Jp5iKrnEZ-ICqB7DgeTfndTMx2_zt8VOvUj-k4zXr2aeONhtDEpdgnzVgg626Q5nQ8uX6om3LCQPe998gSCVM1hFJE2ndL16Yph-RgnS_M5wdu-oEfw6NqmNGqHDvoZSMvvXWR9OzX76GMf17tmLR3XXp0ssWfE7IHeYtwb26WMQ9Ojnq9eKlzfQe68kr1_JEiSaVetGEyiivwmmSwapPp8Pb-ZsRqZwT2jHheYIaKB1I5MCl4QiUiBwMueGqVlRBHzkYYeRuETkgptQ0tkiC8IkhwzgTWRaekkb_lcEYoSG7S2KogSUOeYLmBABXCwKlYIdUD0yEtH8D5ohp-Ma_j2iH9bUC338qCItDzzUt4j0u9OXH-7xMXpFEs13CJqF8k3bI1r1s_-zcL4LHa
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2Vcii9sBREWXPgSNqksWP7iFCrAm1BqEjcKseeIkRIqy4g-HrsJA0IceCWRbEySZR59rz3BuAsMlNk5J50_VAKl3CPupxq4epAcS0MPqAZQXYQdh_I9SN9LMF5oYVBxJR8hg27mdby9UQt7VJZkwbCKqDXYJ0SQmim1ipWVKw5uAj8lXqL2greytQp32e5hsf3RPOi12vfD28HmWdlPnTeY6UKlWUylR_vMo5_pJvOJvRXN5qxTF4ay0XUUJ-_PBz_G8kW7H4L-5y7ImVtQwmTHaj2C-vWeQ2I7Y4Wuza7accSzlOi7Bs6c0t1T54cg3Idy_qQsWOO4GsU43wXHjrt4WXXzVsruM8GECzMLy5sMa5RjtEiMhpobBFKxoorhmGgVWBenfJ8TRljQvnKoCifMGSotfSUDvagnEwS3AcHGZHjUHEvGvskMvMVk-F8bGkecoMVUdahZuMfTTP3jFEeeh2axSMuzqUzEk-MbBuZmcG-tkmmWF1x8PdAp1DpDvu9Ue9qcHMIG1m1x3LAjqC8mC3x2ICGRXSSfitf7c-6ZQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSgMxEA3aHsSLSitWVHLwmjbbTTbJUcRSPJQeLNRTySazKq5rsVtFv95Jd9sKHsRrNoEwgXlvljfzCLlMsUQGzS2LEmuY0FwyLb1hPnbaG-QHshLIjpLhRNxO5XT7vyNEtU79mI6zvOse195oCE1CyV3STCSy7gZpTkbjq_u6KSfiphe8R96QMFVDKGVsQrd0bZqyT_aWxdx-fuCmH_gxOKiGGS1WYweDbOS5uyzTrvv6PZTxz6sdkva2S4-ON_hzRHagaBERzM1yFsDJ06AXX-lc34EuglK9eKBIUmkQbdic4gq8pDks2mQyuLm7HrLaGYE9IZ6XmKGSvtIebAaBUMnYQ19IkTntFCSxdzFG3vHIS6WUcZFDEoRXBAXeW-58fEwaxWsBJ4SCEjZLnOZpFokUyw0EqAj6XicaqR7YDmmFAM7m1fCLWR3XDultArr5tioouJmtXyJ4XJr1idN_nzgjjfJtCeeI-mV6UT_4N-YKsNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+47th+Annual+Allerton+Conference+on+Communication%2C+Control%2C+and+Computing&rft.atitle=Model-based+compressive+sensing+for+signal+ensembles&rft.au=Duarte%2C+M.F.&rft.au=Cevher%2C+V.&rft.au=Baraniuk%2C+R.G.&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9781424458707&rft.spage=244&rft.epage=250&rft_id=info:doi/10.1109%2FALLERTON.2009.5394807&rft.externalDocID=5394807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424458707/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424458707/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424458707/sc.gif&client=summon&freeimage=true