Model-based compressive sensing for signal ensembles
Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we measure M ¿ N inner products with random vectors and then recover the signal via a sparsity-seeking optimization or greedy algorithm. A new fr...
Saved in:
| Published in | 2009 47th Annual Allerton Conference on Communication, Control, and Computing pp. 244 - 250 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2009
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424458707 1424458706 |
| DOI | 10.1109/ALLERTON.2009.5394807 |
Cover
| Abstract | Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we measure M ¿ N inner products with random vectors and then recover the signal via a sparsity-seeking optimization or greedy algorithm. A new framework for CS based on unions of subspaces can improve signal recovery by including dependencies between values and locations of the signal's significant coefficients. In this paper, we extend this framework to the acquisition of signal ensembles under a common sparse supports model. The new framework provides recovery algorithms with theoretical performance guarantees. Additionally, the framework scales naturally to large sensor networks: the number of measurements needed for each signal does not increase as the network becomes larger. Furthermore, the complexity of the recovery algorithm is only linear in the size of the network. We provide experimental results using synthetic and real-world signals that confirm these benefits. |
|---|---|
| AbstractList | Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we measure M ¿ N inner products with random vectors and then recover the signal via a sparsity-seeking optimization or greedy algorithm. A new framework for CS based on unions of subspaces can improve signal recovery by including dependencies between values and locations of the signal's significant coefficients. In this paper, we extend this framework to the acquisition of signal ensembles under a common sparse supports model. The new framework provides recovery algorithms with theoretical performance guarantees. Additionally, the framework scales naturally to large sensor networks: the number of measurements needed for each signal does not increase as the network becomes larger. Furthermore, the complexity of the recovery algorithm is only linear in the size of the network. We provide experimental results using synthetic and real-world signals that confirm these benefits. |
| Author | Duarte, M.F. Cevher, V. Baraniuk, R.G. |
| Author_xml | – sequence: 1 givenname: M.F. surname: Duarte fullname: Duarte, M.F. organization: Program in Appl. & Comput. Math., Princeton Univ., Princeton, NJ, USA – sequence: 2 givenname: V. surname: Cevher fullname: Cevher, V. organization: Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA – sequence: 3 givenname: R.G. surname: Baraniuk fullname: Baraniuk, R.G. organization: Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA |
| BookMark | eNpVkF1LwzAUhiMqqLO_QIT-gdZ8Ns3lGHMK1YHM65AlpyOSpqOZyv69HZuC5-Zw3pfnXDw36CL2ERC6J7gkBKuHadPM31bL15JirErBFK-xPEOZkjXhlHNRS8LP_91YXqEspQ88DhdUMXKN-EvvIBRrk8Dltu-2A6TkvyBPEJOPm7zthzz5TTQhHxPo1gHSLbpsTUiQnfYEvT_OV7OnolkunmfTpvCU0l2hSEVl7cC0wEnFBHNAueCtra2EijnLKqMsJk5IKZUlVlFFuAQJzhlsHZug6vj3M27N_tuEoLeD78yw1wTrgwY9ZjDs-qgPGvRJwwjeHUEPAH_Mb_sDcuJcBw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| DOI | 10.1109/ALLERTON.2009.5394807 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781424458714 1424458714 |
| EndPage | 250 |
| ExternalDocumentID | oai:infoscience.tind.io:151475 5394807 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IG 6IK 6IL 6IM 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL RIO ADTOC UNPAY |
| ID | FETCH-LOGICAL-i222t-916278deafe416353de2454fc8c7e63dc36a9c01d57779c1c929147e7edda0cd3 |
| IEDL.DBID | UNPAY |
| ISBN | 9781424458707 1424458706 |
| IngestDate | Tue Aug 19 09:21:03 EDT 2025 Wed Aug 27 02:44:52 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i222t-916278deafe416353de2454fc8c7e63dc36a9c01d57779c1c929147e7edda0cd3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/151475 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_5394807 unpaywall_primary_10_1109_allerton_2009_5394807 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Sept. |
| PublicationDateYYYYMMDD | 2009-09-01 |
| PublicationDate_xml | – month: 09 year: 2009 text: 2009-Sept. |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 47th Annual Allerton Conference on Communication, Control, and Computing |
| PublicationTitleAbbrev | ALLERTON |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452931 |
| Score | 1.5594916 |
| Snippet | Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquiring sparse or compressible signals. Instead of taking N periodic samples, we... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 244 |
| SubjectTerms | Algorithm design and analysis Collaboration Greedy algorithms Mathematical model Mathematics Measurement standards Robustness Sampling methods Signal generators Signal processing |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AF_XiA4z4Sg8eLbS02909GgMhBtAYSLiR7e5gjLUQaDX6693tS2M8eOsj3XTapvPtzvd9A3AV6ikyMkfYbiC47TOH2IwobitPMsU1PiA5QXYSDGf-3ZzMa3BdaWEQMSOfYcdsZrV8tZKpWSrrEo8bBXQd6pQFuVarWk8x1uDcc0vtFjH1u9LSqdinhYLHdXj3ZjTqP07vJ7ljZTFw0WFlD3bSeC0-3kUU_Ug2g30Yl7eZc0xeOmkSduTnLwfH_8ZxAK1vWZ_1UCWsQ6hhfAR748q4ddsE3_RGi2yT25Rl6OYZTfYNra0husdPlsa4luF8iMjSR_A1jHDbgtmgP70d2kVjBftZw4FE_-CCHmUKxRINHiOewp5P_KVkkmLgKenpFycdVxFKKZeu1BjK9SlSVEo4UnnH0IhXMZ6AhdQXy0AyJ1y6fqhnKzq_udhTLGAaKaJoQ9PEv1jn3hmLIvQ2dKtHXJ3L5iMOX5gmMhuNfE2LTF5ecfr3QGewm9d3DOvrHBrJJsULDROS8DL7Pr4AJcG3GA priority: 102 providerName: IEEE |
| Title | Model-based compressive sensing for signal ensembles |
| URI | https://ieeexplore.ieee.org/document/5394807 http://infoscience.epfl.ch/record/151475 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA66HcSLyiZOdOTgNVu7Jk1yFHEMD2MHB_M00uRVxVrH1in6631pu03wIF7TBMILvO975XvvI-QqwRIZVGBYGBvNuAoEU8Jp5iKrnEZ-ICqB7DgeTfndTMx2_zt8VOvUj-k4zXr2aeONhtDEpdgnzVgg626Q5nQ8uX6om3LCQPe998gSCVM1hFJE2ndL16Yph-RgnS_M5wdu-oEfw6NqmNGqHDvoZSMvvXWR9OzX76GMf17tmLR3XXp0ssWfE7IHeYtwb26WMQ9Ojnq9eKlzfQe68kr1_JEiSaVetGEyiivwmmSwapPp8Pb-ZsRqZwT2jHheYIaKB1I5MCl4QiUiBwMueGqVlRBHzkYYeRuETkgptQ0tkiC8IkhwzgTWRaekkb_lcEYoSG7S2KogSUOeYLmBABXCwKlYIdUD0yEtH8D5ohp-Ma_j2iH9bUC338qCItDzzUt4j0u9OXH-7xMXpFEs13CJqF8k3bI1r1s_-zcL4LHa |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2Vcii9sBREWXPgSNqksWP7iFCrAm1BqEjcKseeIkRIqy4g-HrsJA0IceCWRbEySZR59rz3BuAsMlNk5J50_VAKl3CPupxq4epAcS0MPqAZQXYQdh_I9SN9LMF5oYVBxJR8hg27mdby9UQt7VJZkwbCKqDXYJ0SQmim1ipWVKw5uAj8lXqL2greytQp32e5hsf3RPOi12vfD28HmWdlPnTeY6UKlWUylR_vMo5_pJvOJvRXN5qxTF4ay0XUUJ-_PBz_G8kW7H4L-5y7ImVtQwmTHaj2C-vWeQ2I7Y4Wuza7accSzlOi7Bs6c0t1T54cg3Idy_qQsWOO4GsU43wXHjrt4WXXzVsruM8GECzMLy5sMa5RjtEiMhpobBFKxoorhmGgVWBenfJ8TRljQvnKoCifMGSotfSUDvagnEwS3AcHGZHjUHEvGvskMvMVk-F8bGkecoMVUdahZuMfTTP3jFEeeh2axSMuzqUzEk-MbBuZmcG-tkmmWF1x8PdAp1DpDvu9Ue9qcHMIG1m1x3LAjqC8mC3x2ICGRXSSfitf7c-6ZQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSgMxEA3aHsSLSitWVHLwmjbbTTbJUcRSPJQeLNRTySazKq5rsVtFv95Jd9sKHsRrNoEwgXlvljfzCLlMsUQGzS2LEmuY0FwyLb1hPnbaG-QHshLIjpLhRNxO5XT7vyNEtU79mI6zvOse195oCE1CyV3STCSy7gZpTkbjq_u6KSfiphe8R96QMFVDKGVsQrd0bZqyT_aWxdx-fuCmH_gxOKiGGS1WYweDbOS5uyzTrvv6PZTxz6sdkva2S4-ON_hzRHagaBERzM1yFsDJ06AXX-lc34EuglK9eKBIUmkQbdic4gq8pDks2mQyuLm7HrLaGYE9IZ6XmKGSvtIebAaBUMnYQ19IkTntFCSxdzFG3vHIS6WUcZFDEoRXBAXeW-58fEwaxWsBJ4SCEjZLnOZpFokUyw0EqAj6XicaqR7YDmmFAM7m1fCLWR3XDultArr5tioouJmtXyJ4XJr1idN_nzgjjfJtCeeI-mV6UT_4N-YKsNk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+47th+Annual+Allerton+Conference+on+Communication%2C+Control%2C+and+Computing&rft.atitle=Model-based+compressive+sensing+for+signal+ensembles&rft.au=Duarte%2C+M.F.&rft.au=Cevher%2C+V.&rft.au=Baraniuk%2C+R.G.&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9781424458707&rft.spage=244&rft.epage=250&rft_id=info:doi/10.1109%2FALLERTON.2009.5394807&rft.externalDocID=5394807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424458707/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424458707/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424458707/sc.gif&client=summon&freeimage=true |