Structure evolution for time-delay neural networks

The paper presents a structure finding algorithm for time-delay neural networks based on the working principle of evolutionary algorithms. Multilayer perceptrons, which are a subclass of time-delay neural networks, can also be constructed. The algorithm selects appropriate input features for the neu...

Full description

Saved in:
Bibliographic Details
Published in9th International Conference on Artificial Neural Networks: ICANN '99 pp. 667 - 672
Main Author Sick, B
Format Conference Proceeding Journal Article
LanguageEnglish
Published London IEE 1999
Subjects
Online AccessGet full text
ISBN0852967217
9780852967218
ISSN0537-9989
DOI10.1049/cp:19991187

Cover

Abstract The paper presents a structure finding algorithm for time-delay neural networks based on the working principle of evolutionary algorithms. Multilayer perceptrons, which are a subclass of time-delay neural networks, can also be constructed. The algorithm selects appropriate input features for the neural networks from a set of possible inputs, finds optimal values for the number of layers and hidden neurons, constructs connections between neurons, and determines the ideal values of time-delays. The approach uses a new, graphical coding scheme, a rank-based selection mechanism, and seventeen reproduction operators for mutation and crossover. The advantages of this approach are shown by means of an application example (tool wear estimation in turning).
AbstractList The paper presents a structure finding algorithm for time-delay neural networks based on the working principle of evolutionary algorithms. Multilayer perceptrons, which are a subclass of time-delay neural networks, can also be constructed. The algorithm selects appropriate input features for the neural networks from a set of possible inputs, finds optimal values for the number of layers and hidden neurons, constructs connections between neurons, and determines the ideal values of time-delays. The approach uses a new, graphical coding scheme, a rank-based selection mechanism, and seventeen reproduction operators for mutation and crossover. The advantages of this approach are shown by means of an application example (tool wear estimation in turning).
The selection of an optimal neural network structure for a specific application is one of the main problems in the area of neural networks. The paper presents a structure finding algorithm for time-delay neural networks based on the working principle of evolutionary algorithms. Multilayer perceptrons, which are a subclass of time-delay neural networks, can be constructed as well. The algorithm selects appropriate input features for the neural networks from a set of possible inputs, finds optimal values for the number of layers and hidden neurons, constructs connections between neurons, and determines the ideal values of time-delays. The approach uses a new, graphical coding scheme, a rank-based selection mechanism, and seventeen reproduction operators for mutation and crossover. The advantages of this approach are shown by means of an application example (tool wear estimation in turning).
Author Sick, B
Author_xml – sequence: 1
  givenname: B
  surname: Sick
  fullname: Sick, B
  organization: Passau Univ
BookMark eNo1kL1OwzAURi1RJNrSiRfIxIAU8HWcOJcNVfxJlRiA2XLsGymQxsF2QLw9QYVvOcvRN5wVWwx-IMbOgF8Cl3hlx2tARIBaHbEVr0uBlRKgFmzJy0LliDWesE2Mb3yelKXEesnEcwqTTVOgjD59P6XOD1nrQ5a6PeWOevOdDTQF089IXz68x1N23Jo-0uaPa_Z6d_uyfch3T_eP25td3gnAlDtnHAeg2mBbUOOUaHgjOUrRtiBVVTXSygrQGWmtcqJ0UIKUFdYww6lizc4Pv2PwHxPFpPddtNT3ZiA_RS0UzLKCWbw4iB0lbf3QUqDBUtTA9W8abUf9n6b4AfC8V3k
ContentType Conference Proceeding
Journal Article
DBID 8ET
7SP
8FD
L7M
DOI 10.1049/cp:19991187
DatabaseName IET Conference Publications by volume
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Medicine
Engineering
Applied Sciences
EndPage 672
ExternalDocumentID 10_1049_cp_19991187
GroupedDBID 6IE
6IK
8ET
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
7SP
8FD
AI.
L7M
VH1
ID FETCH-LOGICAL-i219t-ddad011e8a9f3ebd72b0b40942ff14766b4c4619da4cc7d25d151446981144d73
ISBN 0852967217
9780852967218
ISSN 0537-9989
IngestDate Thu Jul 10 21:46:41 EDT 2025
Tue Jan 05 23:26:38 EST 2021
IsPeerReviewed false
IsScholarly false
Keywords multilayer perceptrons
rank-based selection
delays
time-delay neural networks
evolutionary algorithms
graphical coding
genetic algorithms
hidden neurons
feedforward neural nets
Language English
LinkModel OpenURL
MeetingName 9th International Conference on Artificial Neural Networks: ICANN '99, 7-10 Sept. 1999, Edinburgh, UK
MergedId FETCHMERGED-LOGICAL-i219t-ddad011e8a9f3ebd72b0b40942ff14766b4c4619da4cc7d25d151446981144d73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27169871
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_27169871
iet_conferences_10_1049_cp_19991187
ProviderPackageCode 8ET
PublicationCentury 1900
PublicationDate 19990000
19990101
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 19990000
PublicationDecade 1990
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle 9th International Conference on Artificial Neural Networks: ICANN '99
PublicationYear 1999
Publisher IEE
Publisher_xml – name: IEE
SSID ssj0000445498
ssj0052814
ssj0052829
ssj0054714
Score 1.2746906
Snippet The paper presents a structure finding algorithm for time-delay neural networks based on the working principle of evolutionary algorithms. Multilayer...
The selection of an optimal neural network structure for a specific application is one of the main problems in the area of neural networks. The paper presents...
SourceID proquest
iet
SourceType Aggregation Database
Publisher
StartPage 667
SubjectTerms Neural nets
Optimisation techniques
Title Structure evolution for time-delay neural networks
URI http://digital-library.theiet.org/content/conferences/10.1049/cp_19991187
https://www.proquest.com/docview/27169871
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5sT558VazPgN4k2mynSdabilIFi2ALvYXsI9iDabFR0F_v7GaT9HVQL2kJZbqZL-zMNzsPQs4YoxJY3HHj2EtcCH1wOZphl0PYShL0KAJTPvbU87sDeBx2htXMTFNdkvEL8b2yruQ_qOI9xFVXyf4B2VIo3sDviC9eEWG8Lji_K-0My14XInpV_Z4-BLh-N4lAOiaue3CYD5P0bdLg9KzHHiIfMDb73ryYhrL6WEF92sXnqYijN-XqlpJf52kuLLXCyiCNHcp-U0US8u4Dc5GEhwVyic4YZT4yxHBmg_Pz4RnWVvr52J2lbRhpB-pOTHQ_CO2Betaozne2NuffwCIxiYpf1UgN_zgvwytDZS0AZLGh6d5plxTY3knlEm3pJYq7FJOrQhw6DCOVLZlZ4zv0N0mjQsV5LnHcImsq3SYbxVgNx-6yO4SWEDglBA5C4FQQODkETgFBgwzu7_q3XdeOtnBHaCIyV8pY4s6qwpglbcVlQHmLa6pNk8SDwPc5CEBuK2MQIpC0I9EzAz3tE_kryKC9S-rpOFV7xAEkHooj0QTmARVhHOjMQ_DDMJHaf2-SU9RBJMpHnUYrFN8kJ4WOItxg9KlRnKrxxzSiup8S0ur9X8k5IOvVq3VI6qgwdYRuW8aPDag_vqI8GQ
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=9th+International+Conference+on+Artificial+Neural+Networks%3A+ICANN+%2799&rft.atitle=Structure+evolution+for+time-delay+neural+networks&rft.au=Sick%2C+B&rft.date=1999-01-01&rft.pub=IEE&rft.isbn=9780852967218&rft.spage=667&rft.epage=672&rft_id=info:doi/10.1049%2Fcp%3A19991187&rft.externalDocID=10_1049_cp_19991187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0537-9989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0537-9989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0537-9989&client=summon