Computational intelligence based data fusion algorithm for dynamic sEMG and skeletal muscle force modelling
In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signa...
Saved in:
| Published in | 2013 6th International Symposium on Resilient Control Systems (ISRCS) pp. 74 - 79 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.08.2013
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ISRCS.2013.6623754 |
Cover
| Abstract | In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusion-based approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation. |
|---|---|
| AbstractList | In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusion-based approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation. |
| Author | Potluri, Chandrasekhar Naidu, D. Subbaram Rieger, Craig Schoen, Marco P. Urfer, Alex Anugolu, Madhavi |
| Author_xml | – sequence: 1 givenname: Chandrasekhar surname: Potluri fullname: Potluri, Chandrasekhar email: Potlchan@isu.edu organization: Idaho State Univ., Pocatello, ID, USA – sequence: 2 givenname: Madhavi surname: Anugolu fullname: Anugolu, Madhavi email: anugmadh@isu.edu organization: Idaho State Univ., Pocatello, ID, USA – sequence: 3 givenname: Marco P. surname: Schoen fullname: Schoen, Marco P. email: schomarc@isu.edu organization: Idaho State Univ., Pocatello, ID, USA – sequence: 4 givenname: D. Subbaram surname: Naidu fullname: Naidu, D. Subbaram email: naiduds@isu.edu organization: Idaho State Univ., Pocatello, ID, USA – sequence: 5 givenname: Alex surname: Urfer fullname: Urfer, Alex email: urfealex@isu.edu organization: Idaho State Univ., Pocatello, ID, USA – sequence: 6 givenname: Craig surname: Rieger fullname: Rieger, Craig email: craig.rieger@inl.gov organization: Idaho Nat. Lab., Idaho Falls, ID, USA |
| BookMark | eNo9kNFKwzAUhiMo6OZeQG_yAptJkzXNpZQ5BxPB6XVJk5MZl6ajSZG9vS1Or87F_38fh3-CLkMbAKE7ShaUEvmw2b2Vu0VGKFvkecbEkl-gCeVCSrIkrLhGsxi_CCFUiIwVxQ06lG1z7JNKrg3KYxcSeO_2EDTgWkUw2KiksO3jUMDK79vOpc8G27bD5hRU4zSOq5c1VsHgeAAPadA0fdQextKgaVozOsP-Fl1Z5SPMzneKPp5W7-XzfPu63pSP27nLqExzYVjGh3ctM7bmirPa5FxznpOCcWYkBZLVpGa20DLLhZFA5dJyoS3NC2Y1myL26-3DUZ2-lffVsXON6k4VJdW4U-Vip2M17lSddxqo-1_KAcA_8Jf-ADS_amc |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| DOI | 10.1109/ISRCS.2013.6623754 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479905038 9781479905034 |
| EndPage | 79 |
| ExternalDocumentID | oai:osti.gov:1097181 6623754 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL ADTOC UNPAY |
| ID | FETCH-LOGICAL-i219t-7d324050f3dfb4a43bd64c44608343d91e02b0b3f8c9267d9e195f47cf1683fc3 |
| IEDL.DBID | UNPAY |
| IngestDate | Sun Oct 26 03:57:32 EDT 2025 Wed Aug 27 04:48:04 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i219t-7d324050f3dfb4a43bd64c44608343d91e02b0b3f8c9267d9e195f47cf1683fc3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1097181 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6623754 unpaywall_primary_10_1109_isrcs_2013_6623754 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Aug. |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 6th International Symposium on Resilient Control Systems (ISRCS) |
| PublicationTitleAbbrev | ISRCS |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001772388 |
| Score | 1.5267648 |
| Snippet | In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 74 |
| SubjectTerms | Algorithm design and analysis Approximate Entropy Computational modeling Data fusion Entropy Force Fuzzy logic Muscles Sensors |
| SummonAdditionalLinks | – databaseName: IEEE Xplore Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ai3pRA0b8lR48srHR7teZgGiCMSIJt6VdWyXAIGyL0b_evm0MYjx4W7K2afqafq-v73sfQve27zMhe8qgGswNyhgzuE2E4RCLa_9Umz2P6Y6f3dGUPs2cWQ11Ki6MlDJPPpMmfOZv-WIdZRAq67oaqz2H1lHd892Cq7WPp3ggn-XveDFW0H2cvPYnkLxFzLJjqaBygo6yeMO-PtlyeQAmw1M03k2jyCFZmFnKzej7V4XG_87zDLX2tD38UgHSOarJuIkWhW5DGfPD84MSnBggTGBIEsUqg7AZZsv39XaefqywdmaxKOTqcTIYP2AWC5wsNEppdx2vskTvN2ikh8nVdIDW3kLT4eCtPzJKhQVjrk-q1PAE1ONzLEWE4pRRwoVLI31D1I4ZJSKwpdXjFifKj4Ke64lA2oGjqBcp2_WJisgFasTrWF4iTF1gbzG4_wTw-MsUuH76vCCBI5yIt1ETFircFEU0wnKN2qhT2aL6l19MrCCcJ9soCcGCu-ZXf49yjY57uUwFJObdoEa6zeStdhZSfpfvkh-CUL6l priority: 102 providerName: IEEE |
| Title | Computational intelligence based data fusion algorithm for dynamic sEMG and skeletal muscle force modelling |
| URI | https://ieeexplore.ieee.org/document/6623754 https://www.osti.gov/biblio/1097181 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1KexAvKq1Y0bKgR9Mm3c3HHkVbi9DSg4V6CrvZrIa2SWkSRH-9O_moxYt4zpANmWHnze68NwjdWp7HZThUBtXJ3KCcc0NYRBo2MYXGp9rtxZnudOZMFvR5aS8b6KbmwkBbZaKDu-ipFJFYR8kALkktoFe3HFsD7iZqLWbz-9eaAmOyQZTuAtDetkjf0fncLcT9YVjKMTrK4y3__ODr9UHeGJ-gx3rFsl1k1c8z0Q--fokx_vFJp6jzQ8zD833KOUONMG6jVTmZoTrVw9GByCaGJCUxtIFilcPBGObrt2QXZe8brOEqluVAepyOpk-YxxKnK52HNCDHmzzVEQVG-jXFvBwgrnfQYjx6eZgY1QwFI9J7UWa4EhT3bFMRqQTllAjp0EDXgBp6USKZFZpDYQqivIANHVey0GK2om6gLMcjKiDnqBkncXiBMHWAn8WhwmFwvcsVgDu9IxBmSzsQXdSGX-5vS5kMv_JEF93tXbB_VpQeJvMLx_nguNr88n_mV6iZ7fLwWiODTPQK-l6vio9vG4C9SA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgALIEB844GRlKS28zEjoECLEAWJLbJjG6qWtGoSIfj1-JK0VIiBLVJsy_JZfufzvXsAp14YCqXbxmEWzB0mhHCkR5XDqSutf2rNXsZ0e_d-55ndvvCXBpzNuTBa6zL5TLfws3zLV-OkwFDZuW-xOuBsCZY5Y4xXbK2fiEqAAlrhjBnjRuc3_ceLPqZv0VbdtdZQWYOVIp2Izw8xGi3AydU69GYTqbJIhq0il63k61eNxv_OdAO2f4h75GEOSZvQ0OkWDCvlhjrqRwYLRTgJgpgimCZKTIGBMyJGr-PpIH97J9adJaoSrCfZZe-aiFSRbGhxyjrs5L3I7I7DRnaYUk8Hie3b8Hx1-XTRcWqNBWdgz6rcCRRW5OOuocpIJhiVymeJvSNa14xRFXnabUtXUhMmUdsPVKS9iBsWJMbzQ2oSugPNdJzqXSDMR_6WwBtQhM-_wqDzZ08MGnHFE7kHW7hQ8aQqoxHXa7QHZ3NbzP-VVxM3igfZNMlitOCs-f7fo5zASuep1427N_d3B7DaLkUrME3vEJr5tNBH1nXI5XG5Y74Bp_3B8g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1KexAvKq1YUVnQo2mT7uZjj6KtRWjpwUI9hd1sVkNjUpoE0V_vTj5q8SKeM2RDZth5szvvDUI3ludxGY6UQXUyNyjn3BAWkYZNTKHxqXZ7eaY7mzvTJX1a2asWum64MNBWmergLnsqRSTiKB3CJakF9OqOY2vA3Uad5Xxx99JQYEw2jLJtANrbFhk4Op-7pbg_DEs5RAdFsuGfHzyO9_LG5Ag9NCtW7SLrQZGLQfD1S4zxj086Rr0fYh5e7FLOCWqFSRetq8kM9akejvZENjEkKYmhDRSrAg7GMI9f022Uv71jDVexrAbS42w8e8Q8kThb6zykATl-LzIdUWCkX1POywHieg8tJ-Pn-6lRz1AwIr0X5YYrQXHPNhWRSlBOiZAODXQNqKEXJZJZoTkSpiDKC9jIcSULLWYr6gbKcjyiAnKK2kmahGcIUwf4WRwqHAbXu1wBuNM7AmG2tAPRR1345f6mksnwa0_00e3OBbtnZelhMr90nA-Oa8zP_2d-gdr5tggvNTLIxVUdGd-xFrxH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+6th+International+Symposium+on+Resilient+Control+Systems+%28ISRCS%29&rft.atitle=Computational+intelligence+based+data+fusion+algorithm+for+dynamic+sEMG+and+skeletal+muscle+force+modelling&rft.au=Potluri%2C+Chandrasekhar&rft.au=Anugolu%2C+Madhavi&rft.au=Schoen%2C+Marco+P.&rft.au=Naidu%2C+D.+Subbaram&rft.date=2013-08-01&rft.pub=IEEE&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1109%2FISRCS.2013.6623754&rft.externalDocID=6623754 |