Computational intelligence based data fusion algorithm for dynamic sEMG and skeletal muscle force modelling

In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signa...

Full description

Saved in:
Bibliographic Details
Published in2013 6th International Symposium on Resilient Control Systems (ISRCS) pp. 74 - 79
Main Authors Potluri, Chandrasekhar, Anugolu, Madhavi, Schoen, Marco P., Naidu, D. Subbaram, Urfer, Alex, Rieger, Craig
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2013
Subjects
Online AccessGet full text
DOI10.1109/ISRCS.2013.6623754

Cover

Abstract In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusion-based approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.
AbstractList In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusion-based approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.
Author Potluri, Chandrasekhar
Naidu, D. Subbaram
Rieger, Craig
Schoen, Marco P.
Urfer, Alex
Anugolu, Madhavi
Author_xml – sequence: 1
  givenname: Chandrasekhar
  surname: Potluri
  fullname: Potluri, Chandrasekhar
  email: Potlchan@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 2
  givenname: Madhavi
  surname: Anugolu
  fullname: Anugolu, Madhavi
  email: anugmadh@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 3
  givenname: Marco P.
  surname: Schoen
  fullname: Schoen, Marco P.
  email: schomarc@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 4
  givenname: D. Subbaram
  surname: Naidu
  fullname: Naidu, D. Subbaram
  email: naiduds@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 5
  givenname: Alex
  surname: Urfer
  fullname: Urfer, Alex
  email: urfealex@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 6
  givenname: Craig
  surname: Rieger
  fullname: Rieger, Craig
  email: craig.rieger@inl.gov
  organization: Idaho Nat. Lab., Idaho Falls, ID, USA
BookMark eNo9kNFKwzAUhiMo6OZeQG_yAptJkzXNpZQ5BxPB6XVJk5MZl6ajSZG9vS1Or87F_38fh3-CLkMbAKE7ShaUEvmw2b2Vu0VGKFvkecbEkl-gCeVCSrIkrLhGsxi_CCFUiIwVxQ06lG1z7JNKrg3KYxcSeO_2EDTgWkUw2KiksO3jUMDK79vOpc8G27bD5hRU4zSOq5c1VsHgeAAPadA0fdQextKgaVozOsP-Fl1Z5SPMzneKPp5W7-XzfPu63pSP27nLqExzYVjGh3ctM7bmirPa5FxznpOCcWYkBZLVpGa20DLLhZFA5dJyoS3NC2Y1myL26-3DUZ2-lffVsXON6k4VJdW4U-Vip2M17lSddxqo-1_KAcA_8Jf-ADS_amc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/ISRCS.2013.6623754
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 1479905038
9781479905034
EndPage 79
ExternalDocumentID oai:osti.gov:1097181
6623754
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i219t-7d324050f3dfb4a43bd64c44608343d91e02b0b3f8c9267d9e195f47cf1683fc3
IEDL.DBID UNPAY
IngestDate Sun Oct 26 03:57:32 EDT 2025
Wed Aug 27 04:48:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i219t-7d324050f3dfb4a43bd64c44608343d91e02b0b3f8c9267d9e195f47cf1683fc3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1097181
PageCount 6
ParticipantIDs ieee_primary_6623754
unpaywall_primary_10_1109_isrcs_2013_6623754
PublicationCentury 2000
PublicationDate 2013-Aug.
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-Aug.
PublicationDecade 2010
PublicationTitle 2013 6th International Symposium on Resilient Control Systems (ISRCS)
PublicationTitleAbbrev ISRCS
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001772388
Score 1.5267648
Snippet In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 74
SubjectTerms Algorithm design and analysis
Approximate Entropy
Computational modeling
Data fusion
Entropy
Force
Fuzzy logic
Muscles
Sensors
SummonAdditionalLinks – databaseName: IEEE Xplore Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ai3pRA0b8lR48srHR7teZgGiCMSIJt6VdWyXAIGyL0b_evm0MYjx4W7K2afqafq-v73sfQve27zMhe8qgGswNyhgzuE2E4RCLa_9Umz2P6Y6f3dGUPs2cWQ11Ki6MlDJPPpMmfOZv-WIdZRAq67oaqz2H1lHd892Cq7WPp3ggn-XveDFW0H2cvPYnkLxFzLJjqaBygo6yeMO-PtlyeQAmw1M03k2jyCFZmFnKzej7V4XG_87zDLX2tD38UgHSOarJuIkWhW5DGfPD84MSnBggTGBIEsUqg7AZZsv39XaefqywdmaxKOTqcTIYP2AWC5wsNEppdx2vskTvN2ikh8nVdIDW3kLT4eCtPzJKhQVjrk-q1PAE1ONzLEWE4pRRwoVLI31D1I4ZJSKwpdXjFifKj4Ke64lA2oGjqBcp2_WJisgFasTrWF4iTF1gbzG4_wTw-MsUuH76vCCBI5yIt1ETFircFEU0wnKN2qhT2aL6l19MrCCcJ9soCcGCu-ZXf49yjY57uUwFJObdoEa6zeStdhZSfpfvkh-CUL6l
  priority: 102
  providerName: IEEE
Title Computational intelligence based data fusion algorithm for dynamic sEMG and skeletal muscle force modelling
URI https://ieeexplore.ieee.org/document/6623754
https://www.osti.gov/biblio/1097181
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1KexAvKq1Y0bKgR9Mm3c3HHkVbi9DSg4V6CrvZrIa2SWkSRH-9O_moxYt4zpANmWHnze68NwjdWp7HZThUBtXJ3KCcc0NYRBo2MYXGp9rtxZnudOZMFvR5aS8b6KbmwkBbZaKDu-ipFJFYR8kALkktoFe3HFsD7iZqLWbz-9eaAmOyQZTuAtDetkjf0fncLcT9YVjKMTrK4y3__ODr9UHeGJ-gx3rFsl1k1c8z0Q--fokx_vFJp6jzQ8zD833KOUONMG6jVTmZoTrVw9GByCaGJCUxtIFilcPBGObrt2QXZe8brOEqluVAepyOpk-YxxKnK52HNCDHmzzVEQVG-jXFvBwgrnfQYjx6eZgY1QwFI9J7UWa4EhT3bFMRqQTllAjp0EDXgBp6USKZFZpDYQqivIANHVey0GK2om6gLMcjKiDnqBkncXiBMHWAn8WhwmFwvcsVgDu9IxBmSzsQXdSGX-5vS5kMv_JEF93tXbB_VpQeJvMLx_nguNr88n_mV6iZ7fLwWiODTPQK-l6vio9vG4C9SA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgALIEB844GRlKS28zEjoECLEAWJLbJjG6qWtGoSIfj1-JK0VIiBLVJsy_JZfufzvXsAp14YCqXbxmEWzB0mhHCkR5XDqSutf2rNXsZ0e_d-55ndvvCXBpzNuTBa6zL5TLfws3zLV-OkwFDZuW-xOuBsCZY5Y4xXbK2fiEqAAlrhjBnjRuc3_ceLPqZv0VbdtdZQWYOVIp2Izw8xGi3AydU69GYTqbJIhq0il63k61eNxv_OdAO2f4h75GEOSZvQ0OkWDCvlhjrqRwYLRTgJgpgimCZKTIGBMyJGr-PpIH97J9adJaoSrCfZZe-aiFSRbGhxyjrs5L3I7I7DRnaYUk8Hie3b8Hx1-XTRcWqNBWdgz6rcCRRW5OOuocpIJhiVymeJvSNa14xRFXnabUtXUhMmUdsPVKS9iBsWJMbzQ2oSugPNdJzqXSDMR_6WwBtQhM-_wqDzZ08MGnHFE7kHW7hQ8aQqoxHXa7QHZ3NbzP-VVxM3igfZNMlitOCs-f7fo5zASuep1427N_d3B7DaLkUrME3vEJr5tNBH1nXI5XG5Y74Bp_3B8g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1KexAvKq1YUVnQo2mT7uZjj6KtRWjpwUI9hd1sVkNjUpoE0V_vTj5q8SKeM2RDZth5szvvDUI3ludxGY6UQXUyNyjn3BAWkYZNTKHxqXZ7eaY7mzvTJX1a2asWum64MNBWmergLnsqRSTiKB3CJakF9OqOY2vA3Uad5Xxx99JQYEw2jLJtANrbFhk4Op-7pbg_DEs5RAdFsuGfHzyO9_LG5Ag9NCtW7SLrQZGLQfD1S4zxj086Rr0fYh5e7FLOCWqFSRetq8kM9akejvZENjEkKYmhDRSrAg7GMI9f022Uv71jDVexrAbS42w8e8Q8kThb6zykATl-LzIdUWCkX1POywHieg8tJ-Pn-6lRz1AwIr0X5YYrQXHPNhWRSlBOiZAODXQNqKEXJZJZoTkSpiDKC9jIcSULLWYr6gbKcjyiAnKK2kmahGcIUwf4WRwqHAbXu1wBuNM7AmG2tAPRR1345f6mksnwa0_00e3OBbtnZelhMr90nA-Oa8zP_2d-gdr5tggvNTLIxVUdGd-xFrxH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+6th+International+Symposium+on+Resilient+Control+Systems+%28ISRCS%29&rft.atitle=Computational+intelligence+based+data+fusion+algorithm+for+dynamic+sEMG+and+skeletal+muscle+force+modelling&rft.au=Potluri%2C+Chandrasekhar&rft.au=Anugolu%2C+Madhavi&rft.au=Schoen%2C+Marco+P.&rft.au=Naidu%2C+D.+Subbaram&rft.date=2013-08-01&rft.pub=IEEE&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1109%2FISRCS.2013.6623754&rft.externalDocID=6623754