Recurrent Neural Network based MPC for Process Industries
Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of the autonomous systems or to serve as simulators for reinforcement learning. The trends of digitalization, cheap storage, and industry 4.0 enab...
Saved in:
| Published in | 2019 18th European Control Conference (ECC) pp. 1005 - 1010 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
EUCA
01.06.2019
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.23919/ECC.2019.8795809 |
Cover
| Abstract | Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of the autonomous systems or to serve as simulators for reinforcement learning. The trends of digitalization, cheap storage, and industry 4.0 enable the access to more and more historical data that can be used in data driven methods to perform system identification. Model predictive control (MPC) is a promising advanced control framework, which might be part of autonomous plants or contribute to some extent to autonomy. In this article, we combine data-driven modeling with MPC and investigate how to train, validate, and incorporate a special recurrent neural network (RNN) architecture into an MPC framework. The proposed structure is designed for being scalable and applicable to a wide range of multiple-input multiple-output (MIMO) systems encountered in industrial applications. The training, validation, and closed-loop control using RNNs are demonstrated in an industrial simulation case study. The results show that the proposed framework performs well dealing with challenging practical conditions such as MIMO control, nonlinearities, noise, and time delays. |
|---|---|
| AbstractList | Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of the autonomous systems or to serve as simulators for reinforcement learning. The trends of digitalization, cheap storage, and industry 4.0 enable the access to more and more historical data that can be used in data driven methods to perform system identification. Model predictive control (MPC) is a promising advanced control framework, which might be part of autonomous plants or contribute to some extent to autonomy. In this article, we combine data-driven modeling with MPC and investigate how to train, validate, and incorporate a special recurrent neural network (RNN) architecture into an MPC framework. The proposed structure is designed for being scalable and applicable to a wide range of multiple-input multiple-output (MIMO) systems encountered in industrial applications. The training, validation, and closed-loop control using RNNs are demonstrated in an industrial simulation case study. The results show that the proposed framework performs well dealing with challenging practical conditions such as MIMO control, nonlinearities, noise, and time delays. |
| Author | Jones, Colin Lian, Ying Zhao Cortinovis, Andrea Dominguez, Luis Lanzetti, Nicolas Mercangoz, Mehmet |
| Author_xml | – sequence: 1 givenname: Nicolas surname: Lanzetti fullname: Lanzetti, Nicolas email: lnicolas@ethz.ch organization: ETH Zurich, Institute of Dynamical Systems and Control (IDSC), Zurich, 8092, Switzerland – sequence: 2 givenname: Ying Zhao surname: Lian fullname: Lian, Ying Zhao email: yingzhao.lian@epfl.ch organization: EPFL Lausanne, Automatic Control Laboratory, Lausanne, CH-1015, Switzerland – sequence: 3 givenname: Andrea surname: Cortinovis fullname: Cortinovis, Andrea email: andrea.cortinovis@ch.abb.com organization: ABB Corporate Research, Baden-Dättwil, CH-5405, Switzerland – sequence: 4 givenname: Luis surname: Dominguez fullname: Dominguez, Luis email: luis.dominguez@ch.abb.com organization: Digital ABB, ABB Switzerland, Baden-Dättwil, CH-5405, Switzerland – sequence: 5 givenname: Mehmet surname: Mercangoz fullname: Mercangoz, Mehmet email: mehmet.mercangoez@ch.abb.com organization: ABB Corporate Research, Baden-Dättwil, CH-5405, Switzerland – sequence: 6 givenname: Colin surname: Jones fullname: Jones, Colin email: colin.jones@epfl.ch organization: EPFL Lausanne, Automatic Control Laboratory, Lausanne, CH-1015, Switzerland |
| BookMark | eNo9j8FOwzAQRI0EByj9AMTFP9Bgr5PYPqKoQKUCFYKztY43UkRIKjtR1b-n0MJpDjNvpHfFzvuhJ8ZupMhAWWnvllWVgZA2M9oWRtgzNrfaKCu0zHMhzCWzb1RPMVI_8heaInaHGHdD_OQeEwX-vKl4M0S-iUNNKfFVH6Y0xpbSNbtosEs0P-WMfTws36unxfr1cVXdrxctSDMuQNvQIITcKiPRAJTG5yWpPDcIpFD7sikIAhCih8ZLobXHYIKlolao1IzB8Xfqt7jfYde5bWy_MO6dFO7X01Fdux9Pd_I8QLdHqCWi__1f-w1fwFQt |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| DOI | 10.23919/ECC.2019.8795809 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9783907144008 3907144007 |
| EndPage | 1010 |
| ExternalDocumentID | oai:infoscience.epfl.ch:271651 8795809 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| ID | FETCH-LOGICAL-i218t-279dfa2d49381a82268b46e3448a2e3a7b6f5e2d2eaab2fb1077bad8d9e5c3a33 |
| IEDL.DBID | UNPAY |
| IngestDate | Sun Oct 26 03:00:24 EDT 2025 Wed Aug 27 07:39:58 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i218t-279dfa2d49381a82268b46e3448a2e3a7b6f5e2d2eaab2fb1077bad8d9e5c3a33 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://infoscience.epfl.ch/handle/20.500.14299/162386 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_23919_ecc_2019_8795809 ieee_primary_8795809 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2019 18th European Control Conference (ECC) |
| PublicationTitleAbbrev | ECC |
| PublicationYear | 2019 |
| Publisher | EUCA |
| Publisher_xml | – name: EUCA |
| Score | 2.0271022 |
| Snippet | Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 1005 |
| SubjectTerms | MIMO Noise Predictive control Predictive models Recurrent neural networks Reinforcement learning System dynamics System identification Training |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zF_WisonzFzl4025r0qXNuWwMYTLEwW7lpXkFcXRDV0T_el_arop48NRAH22TF_q9JN_3HmM3xqAGdFQplJnnIMCLwFceKO1DpE1olBMKzx7UdBHcL0fLFrtrtDCIWJLPsO-a5Vm-XaeF2yobuMLYkVPr7YWRqrRa1UGlkNrXg3EcO64WOb-yqwumHLL9It_AxzusVj-wY3LEZru3VpSRl36xNf3081dCxv9-1jHrfqv0-LzBnxPWwrzD9KPbQHcpl7jLuwErupREb-7wyvLZPOYUp_JaIMB3pTvwrcsWk_FTPPXq8gjeM-Hy1hOhthkIG2hCXSCgV5EJFEpacIFACTTM2QiFFQhgRGZooRcasJHVOEolSHnK2vk6xzPGKYwYWql8Cj9MYFM0hhr0L0ttllmRDnus47qdbKoMGEnd4x67bUa2uUeritIdCU2OxLljZ33-90Mu2IGzquhXl6y9fS3wioB-a65LD38BBDCqCw priority: 102 providerName: IEEE |
| Title | Recurrent Neural Network based MPC for Process Industries |
| URI | https://ieeexplore.ieee.org/document/8795809 https://infoscience.epfl.ch/handle/20.500.14299/162386 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxoiMHb9JuTdq0OcpwDGFjiMN5KkmToljqmB2if70vbVfF204tNIfHe-n7vpe8HwDXShkhjU2VMix1LAQ4kfS4I7nwZCRUqLgtFJ7N-XTp36-CVQt4UwuDaq19P_rjNHOTl2HVbwDDdDcY4T9uPejQQ9iO-AF0eIAcvA2d5Xxx-1xdW1ImPDFE2WzmFm6FUASRTTgsx6ccweE2X8uvT5llf5BkcgxPOxmqBJI3d1soN_n-155xfyFPoPdbvUcWDS6dQsvkXRAP9mDdtmIith-HzPBRJoATi2OazBZjgvyV1IUDZDfSw3z0YDm5exxPnXpsgvOKeF04NBQ6lVT7AtFYIgHgkfK5YRiISWqYRPWngaGaGikVTRUGgKGSOtLCBAmTjJ1BO3_PzTkQpBcjzbiHtET5OjFK4Qv6uESnqabJqA9dq9N4XXXGiGtV9-Gm0XHzDaON0jAxGia2htmtvthr9SW0i83WXCEVKNSgrNcb1Nb_AUGItN8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHqYXlU2cP3Pwpt3WpO2ac9mYuo4hG-xWkuYVxNENbRH9631puyriwVMDTX8kr_R7L_m-9wi5UQqEBEOVAp5YBgIsX9qeJT1hS1-oofKMUDiceZOl87ByVw1yV2thAKAgn0HPNIu9fL2Jc7NU1jeFsX2j1ttzHcdxS7VWuVXJuLBFfxQEhq2F5i97ViVTDkgrT7fy412u1z_QY3xIwt1zS9LISy_PVC_-_JWS8b8vdkQ63zo9Oq8R6Jg0IG0T8WSW0E3SJWoyb8g1HgqqNzWIpWk4Dyh6qrSSCNBd8Q5465DleLQIJlZVIMF6RmTOLDYUOpFMOwJxVyLUe75yPOAYckkGXOJEJy4wzUBKxRKFod5QSe1rAW7MJecnpJluUjglFB2JgeaejQ6IcnQMSmED_2axThLN4kGXtM2wo22ZAyOqRtwlt_XM1ucwrijMEeHnERlz7Hqf_X2Ta9KaLMJpNL2fPZ6TfXNFSca6IM3sNYdLhP1MXRXW_gIZiq1Y |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxopKDN2m3Jm3aHGU4hrAxxOE8laRJUCx1aIfoX-_L2lXxtlMLzeHxXvq-7yXvB8CVUkZI41KlDLOegwAvkQH3JBeBTISKFXeFwtMZnyzCu2W0bAFvamFQrbXvR39scz97HlT9BjBM96Mh_uPOgw4ChO2E70GHR8jB29BZzOY3T9W1JWUiEAOUzWVu4VaIRZS4hMPN-JQD2F8XK_n1KfP8D5KMD-FxK0OVQPLqr0vlZ9__2jPuLuQR9H6r98i8waVjaJmiC-LeHay7VkzE9eOQOT42CeDE4Zgm0_mIIH8ldeEA2Y70MB89WIxvH0YTrx6b4L0gXpcejYW2kupQIBpLJAA8USE3DAMxSQ2TqH4bGaqpkVJRqzAAjJXUiRYmyphk7ATaxVthToEgvRhqxgOkJSrUmVEKX9DHZdpaTbNhH7pOp-mq6oyR1qruw3Wj4-YbRhsbw6RomNQZZrv6bKfV59Au39fmAqlAqS5ru_8ACaOz3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+European+Control+Conference+%28ECC%29&rft.atitle=Recurrent+Neural+Network+based+MPC+for+Process+Industries&rft.au=Lanzetti%2C+Nicolas&rft.au=Lian%2C+Ying+Zhao&rft.au=Cortinovis%2C+Andrea&rft.au=Dominguez%2C+Luis&rft.date=2019-06-01&rft.pub=EUCA&rft.spage=1005&rft.epage=1010&rft_id=info:doi/10.23919%2FECC.2019.8795809&rft.externalDocID=8795809 |