Recurrent Neural Network based MPC for Process Industries

Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of the autonomous systems or to serve as simulators for reinforcement learning. The trends of digitalization, cheap storage, and industry 4.0 enab...

Full description

Saved in:
Bibliographic Details
Published in2019 18th European Control Conference (ECC) pp. 1005 - 1010
Main Authors Lanzetti, Nicolas, Lian, Ying Zhao, Cortinovis, Andrea, Dominguez, Luis, Mercangoz, Mehmet, Jones, Colin
Format Conference Proceeding
LanguageEnglish
Published EUCA 01.06.2019
Subjects
Online AccessGet full text
DOI10.23919/ECC.2019.8795809

Cover

Abstract Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of the autonomous systems or to serve as simulators for reinforcement learning. The trends of digitalization, cheap storage, and industry 4.0 enable the access to more and more historical data that can be used in data driven methods to perform system identification. Model predictive control (MPC) is a promising advanced control framework, which might be part of autonomous plants or contribute to some extent to autonomy. In this article, we combine data-driven modeling with MPC and investigate how to train, validate, and incorporate a special recurrent neural network (RNN) architecture into an MPC framework. The proposed structure is designed for being scalable and applicable to a wide range of multiple-input multiple-output (MIMO) systems encountered in industrial applications. The training, validation, and closed-loop control using RNNs are demonstrated in an industrial simulation case study. The results show that the proposed framework performs well dealing with challenging practical conditions such as MIMO control, nonlinearities, noise, and time delays.
AbstractList Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of the autonomous systems or to serve as simulators for reinforcement learning. The trends of digitalization, cheap storage, and industry 4.0 enable the access to more and more historical data that can be used in data driven methods to perform system identification. Model predictive control (MPC) is a promising advanced control framework, which might be part of autonomous plants or contribute to some extent to autonomy. In this article, we combine data-driven modeling with MPC and investigate how to train, validate, and incorporate a special recurrent neural network (RNN) architecture into an MPC framework. The proposed structure is designed for being scalable and applicable to a wide range of multiple-input multiple-output (MIMO) systems encountered in industrial applications. The training, validation, and closed-loop control using RNNs are demonstrated in an industrial simulation case study. The results show that the proposed framework performs well dealing with challenging practical conditions such as MIMO control, nonlinearities, noise, and time delays.
Author Jones, Colin
Lian, Ying Zhao
Cortinovis, Andrea
Dominguez, Luis
Lanzetti, Nicolas
Mercangoz, Mehmet
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Lanzetti
  fullname: Lanzetti, Nicolas
  email: lnicolas@ethz.ch
  organization: ETH Zurich, Institute of Dynamical Systems and Control (IDSC), Zurich, 8092, Switzerland
– sequence: 2
  givenname: Ying Zhao
  surname: Lian
  fullname: Lian, Ying Zhao
  email: yingzhao.lian@epfl.ch
  organization: EPFL Lausanne, Automatic Control Laboratory, Lausanne, CH-1015, Switzerland
– sequence: 3
  givenname: Andrea
  surname: Cortinovis
  fullname: Cortinovis, Andrea
  email: andrea.cortinovis@ch.abb.com
  organization: ABB Corporate Research, Baden-Dättwil, CH-5405, Switzerland
– sequence: 4
  givenname: Luis
  surname: Dominguez
  fullname: Dominguez, Luis
  email: luis.dominguez@ch.abb.com
  organization: Digital ABB, ABB Switzerland, Baden-Dättwil, CH-5405, Switzerland
– sequence: 5
  givenname: Mehmet
  surname: Mercangoz
  fullname: Mercangoz, Mehmet
  email: mehmet.mercangoez@ch.abb.com
  organization: ABB Corporate Research, Baden-Dättwil, CH-5405, Switzerland
– sequence: 6
  givenname: Colin
  surname: Jones
  fullname: Jones, Colin
  email: colin.jones@epfl.ch
  organization: EPFL Lausanne, Automatic Control Laboratory, Lausanne, CH-1015, Switzerland
BookMark eNo9j8FOwzAQRI0EByj9AMTFP9Bgr5PYPqKoQKUCFYKztY43UkRIKjtR1b-n0MJpDjNvpHfFzvuhJ8ZupMhAWWnvllWVgZA2M9oWRtgzNrfaKCu0zHMhzCWzb1RPMVI_8heaInaHGHdD_OQeEwX-vKl4M0S-iUNNKfFVH6Y0xpbSNbtosEs0P-WMfTws36unxfr1cVXdrxctSDMuQNvQIITcKiPRAJTG5yWpPDcIpFD7sikIAhCih8ZLobXHYIKlolao1IzB8Xfqt7jfYde5bWy_MO6dFO7X01Fdux9Pd_I8QLdHqCWi__1f-w1fwFQt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.23919/ECC.2019.8795809
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 9783907144008
3907144007
EndPage 1010
ExternalDocumentID oai:infoscience.epfl.ch:271651
8795809
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i218t-279dfa2d49381a82268b46e3448a2e3a7b6f5e2d2eaab2fb1077bad8d9e5c3a33
IEDL.DBID UNPAY
IngestDate Sun Oct 26 03:00:24 EDT 2025
Wed Aug 27 07:39:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i218t-279dfa2d49381a82268b46e3448a2e3a7b6f5e2d2eaab2fb1077bad8d9e5c3a33
OpenAccessLink https://proxy.k.utb.cz/login?url=https://infoscience.epfl.ch/handle/20.500.14299/162386
PageCount 6
ParticipantIDs unpaywall_primary_10_23919_ecc_2019_8795809
ieee_primary_8795809
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle 2019 18th European Control Conference (ECC)
PublicationTitleAbbrev ECC
PublicationYear 2019
Publisher EUCA
Publisher_xml – name: EUCA
Score 2.0271022
Snippet Autonomous operation of industrial plants requires a cheap and efficient way of creating dynamic process models, which can then be used to either be part of...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 1005
SubjectTerms MIMO
Noise
Predictive control
Predictive models
Recurrent neural networks
Reinforcement learning
System dynamics
System identification
Training
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zF_WisonzFzl4025r0qXNuWwMYTLEwW7lpXkFcXRDV0T_el_arop48NRAH22TF_q9JN_3HmM3xqAGdFQplJnnIMCLwFceKO1DpE1olBMKzx7UdBHcL0fLFrtrtDCIWJLPsO-a5Vm-XaeF2yobuMLYkVPr7YWRqrRa1UGlkNrXg3EcO64WOb-yqwumHLL9It_AxzusVj-wY3LEZru3VpSRl36xNf3081dCxv9-1jHrfqv0-LzBnxPWwrzD9KPbQHcpl7jLuwErupREb-7wyvLZPOYUp_JaIMB3pTvwrcsWk_FTPPXq8gjeM-Hy1hOhthkIG2hCXSCgV5EJFEpacIFACTTM2QiFFQhgRGZooRcasJHVOEolSHnK2vk6xzPGKYwYWql8Cj9MYFM0hhr0L0ttllmRDnus47qdbKoMGEnd4x67bUa2uUeritIdCU2OxLljZ33-90Mu2IGzquhXl6y9fS3wioB-a65LD38BBDCqCw
  priority: 102
  providerName: IEEE
Title Recurrent Neural Network based MPC for Process Industries
URI https://ieeexplore.ieee.org/document/8795809
https://infoscience.epfl.ch/handle/20.500.14299/162386
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxoiMHb9JuTdq0OcpwDGFjiMN5KkmToljqmB2if70vbVfF204tNIfHe-n7vpe8HwDXShkhjU2VMix1LAQ4kfS4I7nwZCRUqLgtFJ7N-XTp36-CVQt4UwuDaq19P_rjNHOTl2HVbwDDdDcY4T9uPejQQ9iO-AF0eIAcvA2d5Xxx-1xdW1ImPDFE2WzmFm6FUASRTTgsx6ccweE2X8uvT5llf5BkcgxPOxmqBJI3d1soN_n-155xfyFPoPdbvUcWDS6dQsvkXRAP9mDdtmIith-HzPBRJoATi2OazBZjgvyV1IUDZDfSw3z0YDm5exxPnXpsgvOKeF04NBQ6lVT7AtFYIgHgkfK5YRiISWqYRPWngaGaGikVTRUGgKGSOtLCBAmTjJ1BO3_PzTkQpBcjzbiHtET5OjFK4Qv6uESnqabJqA9dq9N4XXXGiGtV9-Gm0XHzDaON0jAxGia2htmtvthr9SW0i83WXCEVKNSgrNcb1Nb_AUGItN8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHqYXlU2cP3Pwpt3WpO2ac9mYuo4hG-xWkuYVxNENbRH9631puyriwVMDTX8kr_R7L_m-9wi5UQqEBEOVAp5YBgIsX9qeJT1hS1-oofKMUDiceZOl87ByVw1yV2thAKAgn0HPNIu9fL2Jc7NU1jeFsX2j1ttzHcdxS7VWuVXJuLBFfxQEhq2F5i97ViVTDkgrT7fy412u1z_QY3xIwt1zS9LISy_PVC_-_JWS8b8vdkQ63zo9Oq8R6Jg0IG0T8WSW0E3SJWoyb8g1HgqqNzWIpWk4Dyh6qrSSCNBd8Q5465DleLQIJlZVIMF6RmTOLDYUOpFMOwJxVyLUe75yPOAYckkGXOJEJy4wzUBKxRKFod5QSe1rAW7MJecnpJluUjglFB2JgeaejQ6IcnQMSmED_2axThLN4kGXtM2wo22ZAyOqRtwlt_XM1ucwrijMEeHnERlz7Hqf_X2Ta9KaLMJpNL2fPZ6TfXNFSca6IM3sNYdLhP1MXRXW_gIZiq1Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M7SBeVDZxopKDN2m3Jm3aHGU4hrAxxOE8laRJUCx1aIfoX-_L2lXxtlMLzeHxXvq-7yXvB8CVUkZI41KlDLOegwAvkQH3JBeBTISKFXeFwtMZnyzCu2W0bAFvamFQrbXvR39scz97HlT9BjBM96Mh_uPOgw4ChO2E70GHR8jB29BZzOY3T9W1JWUiEAOUzWVu4VaIRZS4hMPN-JQD2F8XK_n1KfP8D5KMD-FxK0OVQPLqr0vlZ9__2jPuLuQR9H6r98i8waVjaJmiC-LeHay7VkzE9eOQOT42CeDE4Zgm0_mIIH8ldeEA2Y70MB89WIxvH0YTrx6b4L0gXpcejYW2kupQIBpLJAA8USE3DAMxSQ2TqH4bGaqpkVJRqzAAjJXUiRYmyphk7ATaxVthToEgvRhqxgOkJSrUmVEKX9DHZdpaTbNhH7pOp-mq6oyR1qruw3Wj4-YbRhsbw6RomNQZZrv6bKfV59Au39fmAqlAqS5ru_8ACaOz3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+European+Control+Conference+%28ECC%29&rft.atitle=Recurrent+Neural+Network+based+MPC+for+Process+Industries&rft.au=Lanzetti%2C+Nicolas&rft.au=Lian%2C+Ying+Zhao&rft.au=Cortinovis%2C+Andrea&rft.au=Dominguez%2C+Luis&rft.date=2019-06-01&rft.pub=EUCA&rft.spage=1005&rft.epage=1010&rft_id=info:doi/10.23919%2FECC.2019.8795809&rft.externalDocID=8795809