An efficient Monte Carlo approach for optimizing decentralized estimation networks constrained by undirected topologies

We consider a decentralized estimation network subject to communication constraints such that nearby platforms can communicate with each other through low capacity links rendering an undirected graph. After transmitting symbols based on its measurement, each node outputs an estimate for the random v...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE/SP 15th Workshop on Statistical Signal Processing pp. 485 - 488
Main Authors Uney, M., Cetin, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2009
Subjects
Online AccessGet full text
ISBN9781424427093
1424427096
ISSN2373-0803
DOI10.1109/SSP.2009.5278534

Cover

Abstract We consider a decentralized estimation network subject to communication constraints such that nearby platforms can communicate with each other through low capacity links rendering an undirected graph. After transmitting symbols based on its measurement, each node outputs an estimate for the random variable it is associated with as a function of both the measurement and incoming messages from neighbors. We are concerned with the underlying design problem and handle it through a Bayesian risk that penalizes the cost of communications as well as estimation errors, and constraining the feasible set of communication and estimation rules local to each node by the undirected communication graph. We adopt an iterative solution previously proposed for decentralized detection networks which can be carried out in a message passing fashion under certain conditions. For the estimation case, the integral operators involved do not yield closed form solutions in general so we utilize Monte Carlo methods. We achieve an iterative algorithm which yields an approximation to an optimal decentralized estimation strategy in a person by person sense subject to such constraints. In an example, we present a quantification of the trade-off between the estimation accuracy and cost of communications using the proposed algorithm.
AbstractList We consider a decentralized estimation network subject to communication constraints such that nearby platforms can communicate with each other through low capacity links rendering an undirected graph. After transmitting symbols based on its measurement, each node outputs an estimate for the random variable it is associated with as a function of both the measurement and incoming messages from neighbors. We are concerned with the underlying design problem and handle it through a Bayesian risk that penalizes the cost of communications as well as estimation errors, and constraining the feasible set of communication and estimation rules local to each node by the undirected communication graph. We adopt an iterative solution previously proposed for decentralized detection networks which can be carried out in a message passing fashion under certain conditions. For the estimation case, the integral operators involved do not yield closed form solutions in general so we utilize Monte Carlo methods. We achieve an iterative algorithm which yields an approximation to an optimal decentralized estimation strategy in a person by person sense subject to such constraints. In an example, we present a quantification of the trade-off between the estimation accuracy and cost of communications using the proposed algorithm.
Author Uney, M.
Cetin, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Uney
  fullname: Uney, M.
  organization: Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey
– sequence: 2
  givenname: M.
  surname: Cetin
  fullname: Cetin, M.
  organization: Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey
BookMark eNpNUE1PAjEQrVESAbmbeOkfAPu1dHskxK8Eowl63pTtFKtru2mXEPj1loDGucy8vPcmM2-ALnzwgNA1JRNKibpdLl8njBA1KZgsCy7O0EjJkgomBJNZcP4fE8UvUJ9xycekJLyHBtlaKlJIqS7RKKVPkksUrGS8j7Yzj8FaVzvwHX4OvgM817EJWLdtDLr-wDZEHNrOfbu982tsoM7SqBu3B4MhZUJ3LnjsoduG-JVwHXzKAuczv9rhjTcuQt1l1IU2NGHtIF2hntVNgtGpD9H7_d3b_HG8eHl4ms8WY8eo7MYCLIDipqZaMDstFOTBArUcdKEoFwKkMlwbapiwuuR6BbUgtswPmpWZ8iGix70b3-rdVjdN1cZ8cdxVlFSHdKuU2uqQbnVKN3tujh4HAH_yX_YHUY13Zw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/SSP.2009.5278534
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424427109
9781424427116
1424427118
142442710X
EndPage 488
ExternalDocumentID oai:pure.ed.ac.uk:publications/0fccbc1b-12a2-485e-ac50-9f92bfc1aa98
5278534
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i217t-4efee93dc1a42f659e1a4fe1f3ea591344e79d3ad1d24fa83abec40f8045dbd63
IEDL.DBID RIE
ISBN 9781424427093
1424427096
ISSN 2373-0803
IngestDate Wed Oct 29 12:16:00 EDT 2025
Wed Aug 27 02:26:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCN 2008905779
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i217t-4efee93dc1a42f659e1a4fe1f3ea591344e79d3ad1d24fa83abec40f8045dbd63
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/20.500.11820/0fccbc1b-12a2-485e-ac50-9f92bfc1aa98
PageCount 4
ParticipantIDs ieee_primary_5278534
unpaywall_primary_10_1109_ssp_2009_5278534
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 IEEE/SP 15th Workshop on Statistical Signal Processing
PublicationTitleAbbrev SSP
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452823
ssj0001682382
Score 1.4313569
Snippet We consider a decentralized estimation network subject to communication constraints such that nearby platforms can communicate with each other through low...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 485
SubjectTerms Bayesian methods
communication constrained inference
Constraint optimization
Costs
Decentralized estimation
Estimation error
Iterative algorithms
Message passing
message passing algorithms
Monte Carlo methods
Network topology
Random variables
random-field estimation
Yield estimation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA5zPogvKk5UVPLgk5AtTZO2eRRRhqD44GA-jcsvGM5OXIe4v96Lbaf4JviWkhSO3LXfHXf3HSHnkJhEBhGYdXnKJDjFiuAy5tMiNyIBXoTYjXx3nw1H8nasxh0ybHthfvELCN5XPH7XCFQDHqw1NjEsESCYLJRnYBVnOmhhgk0AdLFBNjOFXnmXbI7uHy6f2swk14PFouGnVCJHkJLNPJVtsrUsX-HjHWazH9Bys0OmrVB1Rclzf1mZvl394mv8D6l3Se-7wY8-rKFrj3R8uU_eL0vqvxglEIjoXaStolfwNpvTlnicoodL5_iTeZmu8D3qfFPbOV15RyNfR90IScu6uHxBbXQ_4xQK3DcfdFnWEIpPVT2dAQP1HhndXD9eDVkzl4FNMYCpmPTBe506lF2KgNftcRF8ElIPKmbypc-1S8ElTsgARQpoKJKHAt1HZ1yWHpBuOS_9IaEcioBWYrX0OqaAtZY5GBG0FA4Uz47IftTR5LWm3pg0qjsiF2udrfe-whmuJ6jnOFxTt4eP_3L4hHSrt6U_RU-jMmeNEX0CxjPVag
  priority: 102
  providerName: Unpaywall
Title An efficient Monte Carlo approach for optimizing decentralized estimation networks constrained by undirected topologies
URI https://ieeexplore.ieee.org/document/5278534
https://hdl.handle.net/20.500.11820/0fccbc1b-12a2-485e-ac50-9f92bfc1aa98
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-Ccti4AINpfMqHnaalJLbz4WOFQAipqBKrxE6VEz9L1Upa0USI_vV7jpOAph24-cmJ4y_lff8ewHcd5ZG03AaFSUUgtYmDzJokQJGlOY90mFmXjTy-T26n8u4xftyCn30uDCI2wWc4dM3Gl2-WRe1MZZcxT4m7yG3YTrPE52r19hQHDZ61rK6xryRENbWiuKBZkGAkurwunoYe0s_BPbW06FyYobp8eJh4IMv2e23hlV34VJcr_fqiF4t3POhmD8bd7H3oyZ9hXeXDYvMPsONHl7cPR2_ZfmzS87ED2MLyC-y-Ayo8hJdRybABm6AR2NghWrEr_bxYsg6TnJHwy5b0_3mab-gVZrAN-5xv0DAH5eFzJFnp487XrHCSqStQQf35K6tLz12JqnzhBtLhj2B6c_3r6jZoSzYEc9JtqkCiRVTCFJGW3CaxQmpYjKxAHTsnv8RUGaFNZLi0OhOa7pAMbUbHZ3KTiK8wKJclfgMW6szSBSqUROW8w0rJVOfcKsmNjsPkGA7dFs5WHpVj1u7eMfzoT6nvazSdUM3W65Wru6m6h0_-P8YpfPZOIxfndwaD6rnGc5I9qvyiuXQXsDO9n4x-_wWG-Naj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RONC9FAqotKX40BMiS2I7Dx8rVLQFFiEBEreVE4-lFUt2xSZC7K_vOE4CQj305pETxy9l3t8A_NRRHknLbVCYVARSmzjIrEkCFFma80iHmXXZyOOrZHQnz-_j-zU47nNhELEJPsOhaza-fDMvamcqO4l5StxFfoCNWEoZ-2yt3qLiwMGzltk1FpaEqKZaFBc0DxKNRJfZxdPQg_o5wKeWFp0TM1QnNzfXHsqy_WJbemUAm3W50C_PejZ7w4XOPsG4m78PPnkY1lU-LFbvoB3_d4FbsPua78eue062DWtYfobBG6jCHXj-VTJs4CZoBDZ2mFbsVD_N5qxDJWck_rI5_YEepyt6hRlsAz-nKzTMgXn4LElW-sjzJSucbOpKVFB__sLq0vNXoipfuoG0-F24O_t9ezoK2qINwZS0myqQaBGVMEWkJbdJrJAaFiMrUMfOzS8xVUZoExkurc6EplskQ5vR8ZncJGIP1st5iV-AhTqzdIUKJVE5_7BSMtU5t0pyo-Mw2Ycdt4WThcflmLS7tw9H_Sn1fY2uE6rJcrlwlTdV9_DXf49xCJuj2_Hl5PLP1cU3-OhdSC7q7zusV081HpAkUuU_mgv4FysH2EA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA5zPogvKk5UVPLgk5AtTZO2eRRRhqD44GA-jcsvGM5OXIe4v96Lbaf4JviWkhSO3LXfHXf3HSHnkJhEBhGYdXnKJDjFiuAy5tMiNyIBXoTYjXx3nw1H8nasxh0ybHthfvELCN5XPH7XCFQDHqw1NjEsESCYLJRnYBVnOmhhgk0AdLFBNjOFXnmXbI7uHy6f2swk14PFouGnVCJHkJLNPJVtsrUsX-HjHWazH9Bys0OmrVB1Rclzf1mZvl394mv8D6l3Se-7wY8-rKFrj3R8uU_eL0vqvxglEIjoXaStolfwNpvTlnicoodL5_iTeZmu8D3qfFPbOV15RyNfR90IScu6uHxBbXQ_4xQK3DcfdFnWEIpPVT2dAQP1HhndXD9eDVkzl4FNMYCpmPTBe506lF2KgNftcRF8ElIPKmbypc-1S8ElTsgARQpoKJKHAt1HZ1yWHpBuOS_9IaEcioBWYrX0OqaAtZY5GBG0FA4Uz47IftTR5LWm3pg0qjsiF2udrfe-whmuJ6jnOFxTt4eP_3L4hHSrt6U_RU-jMmeNEX0CxjPVag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE%2FSP+15th+Workshop+on+Statistical+Signal+Processing&rft.atitle=An+efficient+Monte+Carlo+approach+for+optimizing+decentralized+estimation+networks+constrained+by+undirected+topologies&rft.au=Uney%2C+M.&rft.au=Cetin%2C+M.&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424427093&rft.issn=2373-0803&rft.spage=485&rft.epage=488&rft_id=info:doi/10.1109%2FSSP.2009.5278534&rft.externalDocID=5278534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-0803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-0803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-0803&client=summon