Discriminant multi-label manifold embedding for facial Action Unit detection
This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit occurrence detection. The problem of AU detection is a multi-label classification problem by its nature, which is a fact overseen by most existing...
        Saved in:
      
    
          | Published in | 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) Vol. 6; pp. 1 - 6 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.05.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/FG.2015.7284871 | 
Cover
| Abstract | This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit occurrence detection. The problem of AU detection is a multi-label classification problem by its nature, which is a fact overseen by most existing work. The correlation information between AUs has the potential of increasing the detection accuracy. We investigate the multi-label AU detection problem by embedding the data on low dimensional manifolds which preserve multi-label correlation. For this, we apply the multi-label Discriminant Laplacian Embedding (DLE) method as an extension to our base system. The system uses SIFT features around a set of facial landmarks that is enhanced with the use of additional non-salient points around transient facial features. Both the base system and the DLE extension show better performance than the challenge baseline results for the two databases in the challenge, and achieve close to 50% as F1-measure on the testing partition in average (9.9% higher than the baseline, in the best case). The DLE extension proves useful for certain AUs, but also shows the need for more analysis to assess the benefits in general. | 
    
|---|---|
| AbstractList | This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit occurrence detection. The problem of AU detection is a multi-label classification problem by its nature, which is a fact overseen by most existing work. The correlation information between AUs has the potential of increasing the detection accuracy. We investigate the multi-label AU detection problem by embedding the data on low dimensional manifolds which preserve multi-label correlation. For this, we apply the multi-label Discriminant Laplacian Embedding (DLE) method as an extension to our base system. The system uses SIFT features around a set of facial landmarks that is enhanced with the use of additional non-salient points around transient facial features. Both the base system and the DLE extension show better performance than the challenge baseline results for the two databases in the challenge, and achieve close to 50% as F1-measure on the testing partition in average (9.9% higher than the baseline, in the best case). The DLE extension proves useful for certain AUs, but also shows the need for more analysis to assess the benefits in general. | 
    
| Author | Yuce, Anil Thiran, Jean-Philippe Hua Gao  | 
    
| Author_xml | – sequence: 1 givenname: Anil surname: Yuce fullname: Yuce, Anil email: anil.yuce@epfl.ch organization: Signal Procesing Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland – sequence: 2 surname: Hua Gao fullname: Hua Gao email: hua.gao@epfl.ch organization: Signal Procesing Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland – sequence: 3 givenname: Jean-Philippe surname: Thiran fullname: Thiran, Jean-Philippe email: jean-philippe.thiran@epfl.ch organization: Signal Procesing Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland  | 
    
| BookMark | eNo9kE9Lw0AQxVdQUGvOHrzsF0id3ST751iqrULBiz2HSXa2LGw2pUmRfntb23qaN7z3Bub3yG5Tn4ixZwFTIcC-LpZTCaKaamlKo8UNy6w2otTWKpBK3rNsGEJzlFqVGsoHtnoLQ7sLXUiYRt7t4xjyiA1F3mEKvo-OU9eQcyFtuO933GMbMPJZO4Y-8XUKI3c00t_6xO48xoGyy5yw9eL9e_6Rr76Wn_PZKg9SqDGvCgBrqKkItVPOF05XFkB5iab1FozQkhRia4Q3ilAJrQGbsrWqREu2mDA4392nLR5-MMZ6e_wBd4daQH0CUftNfQJRX0AcKy_nSiCi__TV_QV9SF2f | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY  | 
    
| DOI | 10.1109/FG.2015.7284871 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781479960262 1479960268  | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | oai:infoscience.tind.io:207802 7284871  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-i216t-530098eb5ea7d6df3d759006f2a8cf908172e6aac81f86ea61770ab4c964a9e93 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Oct 29 12:22:48 EDT 2025 Wed Dec 20 05:19:31 EST 2023  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i216t-530098eb5ea7d6df3d759006f2a8cf908172e6aac81f86ea61770ab4c964a9e93 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/207802 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_7284871 unpaywall_primary_10_1109_fg_2015_7284871  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-May | 
    
| PublicationDateYYYYMMDD | 2015-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-May  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) | 
    
| PublicationTitleAbbrev | FG | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssib026764704 | 
    
| Score | 1.8025805 | 
    
| Snippet | This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit... | 
    
| SourceID | unpaywall ieee  | 
    
| SourceType | Open Access Repository Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Correlation Face Feature extraction Gold Laplace equations Training  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHsSLSitWVHLw4mHX7m6TzR6LWopo6cFCPZV8TGpx3RbdIvrrzaTbVvAgnpNAmCHzJsmbN4RcxNoy5mAksELF-M3ojlSSJoGKuMU7EBOe8v8w4P1R527Mxtv3DrRqFfpdOLZ5qJ_XvdFiB2aoGlnnzGXdNVIfDYbdp0qtJ2pnV3aKTC0Wpi7iCl8Sj-1S9sjusljIzw-Z5z-Qo7e_kjF694KDSBh5CZelCvXXbznGPzd1QJrb-jw63CDPIdmBokHub2YYAlbUFuqJgoFzMeQUJS7sPDcUXhUYXEJdqkqtxOdy2vWVDRSTT2qg9NSsoklGvdvH635Q9UoIZnHEy4AlqAwKioFMDTc2MSn2A-U2lkLbzAF_GgOXUovICg7SJS5pW6qOznhHZpAlR6RWzAs4JtSkHDRKHhkZ-V890IYxACkUABfQIg007GSxksOYVPZukcuNoTdj_orRziZ2OkHfrOee_GPuKamVb0s4c9hfqvPK7d-IKLH2 priority: 102 providerName: Unpaywall  | 
    
| Title | Discriminant multi-label manifold embedding for facial Action Unit detection | 
    
| URI | https://ieeexplore.ieee.org/document/7284871 http://infoscience.epfl.ch/record/207802  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHtSLyibOj5GDF8F260c-ehzqHOLGDg7mqaTNiwxnN6RD9K-3L-2miAdvhSYlvKR5L3m_3-8RcuGnhrHCjThGJj6mGYtfKhCBk3jc4BmISQv5H474YBLeT9m0Rq42XBgAsOAzcPHR5vL1Il3hVVlHFHupRML4lpC85Gqt147PBQ9FN6zUe7xu1OnfIXKLuVWvqnzKHtlZZUv18a7m8x-epL9PhusxlACSF3eVJ276-Uue8b-DPCDNb84eHW-80SGpQdYgDzcz3BZKuAu14EGnmHaYU5S9MIu5pvCagMYutAhfqVF4hU57lu1AMSClGnIL18qaZNK_fbweOFX9BGfmezx3WIBqoZAwUEJzbQItsEYoN76SqYmKYED4wJVKpWckB1UEM6KrkjCNeKgiiIIjUs8WGRwTqgWHFGWQtPJspg9SzRiAkgkAl9AiDbREvCwlMuLKCC1yuTH25p09dnSj2DzHOD_rtid_f-KU7GKrEmN4Rur52wrOizggT9p2AbTJ9mQ07j19AQidtBQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGAoLoBZRnh5YkEjaPGwnIwJKgbZiaKVukROfUUVIK5QIwa8n56QFIQY2S_FF1vlxZ9933xFy7iaasdKMWDqIXQwzllvKE54VO1zjHYgFBvI_GvPB1H-YsVmDXK5zYQDAgM_AxqaJ5atFUuBTWVeUZ2mACeObzPd9VmVrrVaPywX3Rc-v-XucXtjt3yF2i9m1XF1AZZs0i2wpP95lmv6wJf0dMlqNooKQvNhFHtvJ5y-Cxv8Oc5e0v7P26NPaHu2RBmQtMryZ48FQAV6ogQ9a5cRDSpH4Qi9SReE1BoUitHRgqZb4iE6vTL4DRZeUKsgNYCtrk2n_dnI9sOoKCtbcdXhuMQ_5QiFmIIXiSntKYJVQrl0ZJDos3QHhApcyCRwdcJClOyN6MvaTkPsyhNDbJxvZIoMDQpXgkCARkpKOifVBohgDkEEMwAPokBZqIlpWJBlRrYQOuVgre_3NXDx6YaSfI5yfVd_Dv39xRpqDyWgYDe_Hj0dkCyUqxOEx2cjfCjgpvYI8PjWL4QvyqrWx | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHsSLSitWVHLw4mHX7m6TzR6LWopo6cFCPZV8TGpx3RbdIvrrzaTbVvAgnpNAmCHzJsmbN4RcxNoy5mAksELF-M3ojlSSJoGKuMU7EBOe8v8w4P1R527Mxtv3DrRqFfpdOLZ5qJ_XvdFiB2aoGlnnzGXdNVIfDYbdp0qtJ2pnV3aKTC0Wpi7iCl8Sj-1S9sjusljIzw-Z5z-Qo7e_kjF694KDSBh5CZelCvXXbznGPzd1QJrb-jw63CDPIdmBokHub2YYAlbUFuqJgoFzMeQUJS7sPDcUXhUYXEJdqkqtxOdy2vWVDRSTT2qg9NSsoklGvdvH635Q9UoIZnHEy4AlqAwKioFMDTc2MSn2A-U2lkLbzAF_GgOXUovICg7SJS5pW6qOznhHZpAlR6RWzAs4JtSkHDRKHhkZ-V890IYxACkUABfQIg007GSxksOYVPZukcuNoTdj_orRziZ2OkHfrOee_GPuKamVb0s4c9hfqvPK7d-IKLH2 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+11th+IEEE+International+Conference+and+Workshops+on+Automatic+Face+and+Gesture+Recognition+%28FG%29&rft.atitle=Discriminant+multi-label+manifold+embedding+for+facial+Action+Unit+detection&rft.au=Yuce%2C+Anil&rft.au=Hua+Gao&rft.au=Thiran%2C+Jean-Philippe&rft.date=2015-05-01&rft.pub=IEEE&rft.volume=6&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFG.2015.7284871&rft.externalDocID=7284871 |