Discriminant multi-label manifold embedding for facial Action Unit detection

This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit occurrence detection. The problem of AU detection is a multi-label classification problem by its nature, which is a fact overseen by most existing...

Full description

Saved in:
Bibliographic Details
Published in2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) Vol. 6; pp. 1 - 6
Main Authors Yuce, Anil, Hua Gao, Thiran, Jean-Philippe
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text
DOI10.1109/FG.2015.7284871

Cover

Abstract This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit occurrence detection. The problem of AU detection is a multi-label classification problem by its nature, which is a fact overseen by most existing work. The correlation information between AUs has the potential of increasing the detection accuracy. We investigate the multi-label AU detection problem by embedding the data on low dimensional manifolds which preserve multi-label correlation. For this, we apply the multi-label Discriminant Laplacian Embedding (DLE) method as an extension to our base system. The system uses SIFT features around a set of facial landmarks that is enhanced with the use of additional non-salient points around transient facial features. Both the base system and the DLE extension show better performance than the challenge baseline results for the two databases in the challenge, and achieve close to 50% as F1-measure on the testing partition in average (9.9% higher than the baseline, in the best case). The DLE extension proves useful for certain AUs, but also shows the need for more analysis to assess the benefits in general.
AbstractList This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit occurrence detection. The problem of AU detection is a multi-label classification problem by its nature, which is a fact overseen by most existing work. The correlation information between AUs has the potential of increasing the detection accuracy. We investigate the multi-label AU detection problem by embedding the data on low dimensional manifolds which preserve multi-label correlation. For this, we apply the multi-label Discriminant Laplacian Embedding (DLE) method as an extension to our base system. The system uses SIFT features around a set of facial landmarks that is enhanced with the use of additional non-salient points around transient facial features. Both the base system and the DLE extension show better performance than the challenge baseline results for the two databases in the challenge, and achieve close to 50% as F1-measure on the testing partition in average (9.9% higher than the baseline, in the best case). The DLE extension proves useful for certain AUs, but also shows the need for more analysis to assess the benefits in general.
Author Yuce, Anil
Thiran, Jean-Philippe
Hua Gao
Author_xml – sequence: 1
  givenname: Anil
  surname: Yuce
  fullname: Yuce, Anil
  email: anil.yuce@epfl.ch
  organization: Signal Procesing Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 2
  surname: Hua Gao
  fullname: Hua Gao
  email: hua.gao@epfl.ch
  organization: Signal Procesing Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Jean-Philippe
  surname: Thiran
  fullname: Thiran, Jean-Philippe
  email: jean-philippe.thiran@epfl.ch
  organization: Signal Procesing Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
BookMark eNo9kE9Lw0AQxVdQUGvOHrzsF0id3ST751iqrULBiz2HSXa2LGw2pUmRfntb23qaN7z3Bub3yG5Tn4ixZwFTIcC-LpZTCaKaamlKo8UNy6w2otTWKpBK3rNsGEJzlFqVGsoHtnoLQ7sLXUiYRt7t4xjyiA1F3mEKvo-OU9eQcyFtuO933GMbMPJZO4Y-8XUKI3c00t_6xO48xoGyy5yw9eL9e_6Rr76Wn_PZKg9SqDGvCgBrqKkItVPOF05XFkB5iab1FozQkhRia4Q3ilAJrQGbsrWqREu2mDA4392nLR5-MMZ6e_wBd4daQH0CUftNfQJRX0AcKy_nSiCi__TV_QV9SF2f
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/FG.2015.7284871
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 9781479960262
1479960268
EndPage 6
ExternalDocumentID oai:infoscience.tind.io:207802
7284871
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i216t-530098eb5ea7d6df3d759006f2a8cf908172e6aac81f86ea61770ab4c964a9e93
IEDL.DBID RIE
IngestDate Wed Oct 29 12:22:48 EDT 2025
Wed Dec 20 05:19:31 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i216t-530098eb5ea7d6df3d759006f2a8cf908172e6aac81f86ea61770ab4c964a9e93
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/207802
PageCount 6
ParticipantIDs ieee_primary_7284871
unpaywall_primary_10_1109_fg_2015_7284871
PublicationCentury 2000
PublicationDate 2015-May
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May
PublicationDecade 2010
PublicationTitle 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)
PublicationTitleAbbrev FG
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764704
Score 1.8025805
Snippet This article describes a system for participation in the Facial Expression Recognition and Analysis (FERA2015) sub-challenge for spontaneous action unit...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms Correlation
Face
Feature extraction
Gold
Laplace equations
Training
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHsSLSitWVHLw4mHX7m6TzR6LWopo6cFCPZV8TGpx3RbdIvrrzaTbVvAgnpNAmCHzJsmbN4RcxNoy5mAksELF-M3ojlSSJoGKuMU7EBOe8v8w4P1R527Mxtv3DrRqFfpdOLZ5qJ_XvdFiB2aoGlnnzGXdNVIfDYbdp0qtJ2pnV3aKTC0Wpi7iCl8Sj-1S9sjusljIzw-Z5z-Qo7e_kjF694KDSBh5CZelCvXXbznGPzd1QJrb-jw63CDPIdmBokHub2YYAlbUFuqJgoFzMeQUJS7sPDcUXhUYXEJdqkqtxOdy2vWVDRSTT2qg9NSsoklGvdvH635Q9UoIZnHEy4AlqAwKioFMDTc2MSn2A-U2lkLbzAF_GgOXUovICg7SJS5pW6qOznhHZpAlR6RWzAs4JtSkHDRKHhkZ-V890IYxACkUABfQIg007GSxksOYVPZukcuNoTdj_orRziZ2OkHfrOee_GPuKamVb0s4c9hfqvPK7d-IKLH2
  priority: 102
  providerName: Unpaywall
Title Discriminant multi-label manifold embedding for facial Action Unit detection
URI https://ieeexplore.ieee.org/document/7284871
http://infoscience.epfl.ch/record/207802
UnpaywallVersion submittedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHtSLyibOj5GDF8F260c-ehzqHOLGDg7mqaTNiwxnN6RD9K-3L-2miAdvhSYlvKR5L3m_3-8RcuGnhrHCjThGJj6mGYtfKhCBk3jc4BmISQv5H474YBLeT9m0Rq42XBgAsOAzcPHR5vL1Il3hVVlHFHupRML4lpC85Gqt147PBQ9FN6zUe7xu1OnfIXKLuVWvqnzKHtlZZUv18a7m8x-epL9PhusxlACSF3eVJ276-Uue8b-DPCDNb84eHW-80SGpQdYgDzcz3BZKuAu14EGnmHaYU5S9MIu5pvCagMYutAhfqVF4hU57lu1AMSClGnIL18qaZNK_fbweOFX9BGfmezx3WIBqoZAwUEJzbQItsEYoN76SqYmKYED4wJVKpWckB1UEM6KrkjCNeKgiiIIjUs8WGRwTqgWHFGWQtPJspg9SzRiAkgkAl9AiDbREvCwlMuLKCC1yuTH25p09dnSj2DzHOD_rtid_f-KU7GKrEmN4Rur52wrOizggT9p2AbTJ9mQ07j19AQidtBQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGAoLoBZRnh5YkEjaPGwnIwJKgbZiaKVukROfUUVIK5QIwa8n56QFIQY2S_FF1vlxZ9933xFy7iaasdKMWDqIXQwzllvKE54VO1zjHYgFBvI_GvPB1H-YsVmDXK5zYQDAgM_AxqaJ5atFUuBTWVeUZ2mACeObzPd9VmVrrVaPywX3Rc-v-XucXtjt3yF2i9m1XF1AZZs0i2wpP95lmv6wJf0dMlqNooKQvNhFHtvJ5y-Cxv8Oc5e0v7P26NPaHu2RBmQtMryZ48FQAV6ogQ9a5cRDSpH4Qi9SReE1BoUitHRgqZb4iE6vTL4DRZeUKsgNYCtrk2n_dnI9sOoKCtbcdXhuMQ_5QiFmIIXiSntKYJVQrl0ZJDos3QHhApcyCRwdcJClOyN6MvaTkPsyhNDbJxvZIoMDQpXgkCARkpKOifVBohgDkEEMwAPokBZqIlpWJBlRrYQOuVgre_3NXDx6YaSfI5yfVd_Dv39xRpqDyWgYDe_Hj0dkCyUqxOEx2cjfCjgpvYI8PjWL4QvyqrWx
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3SHsSLSitWVHLw4mHX7m6TzR6LWopo6cFCPZV8TGpx3RbdIvrrzaTbVvAgnpNAmCHzJsmbN4RcxNoy5mAksELF-M3ojlSSJoGKuMU7EBOe8v8w4P1R527Mxtv3DrRqFfpdOLZ5qJ_XvdFiB2aoGlnnzGXdNVIfDYbdp0qtJ2pnV3aKTC0Wpi7iCl8Sj-1S9sjusljIzw-Z5z-Qo7e_kjF694KDSBh5CZelCvXXbznGPzd1QJrb-jw63CDPIdmBokHub2YYAlbUFuqJgoFzMeQUJS7sPDcUXhUYXEJdqkqtxOdy2vWVDRSTT2qg9NSsoklGvdvH635Q9UoIZnHEy4AlqAwKioFMDTc2MSn2A-U2lkLbzAF_GgOXUovICg7SJS5pW6qOznhHZpAlR6RWzAs4JtSkHDRKHhkZ-V890IYxACkUABfQIg007GSxksOYVPZukcuNoTdj_orRziZ2OkHfrOee_GPuKamVb0s4c9hfqvPK7d-IKLH2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+11th+IEEE+International+Conference+and+Workshops+on+Automatic+Face+and+Gesture+Recognition+%28FG%29&rft.atitle=Discriminant+multi-label+manifold+embedding+for+facial+Action+Unit+detection&rft.au=Yuce%2C+Anil&rft.au=Hua+Gao&rft.au=Thiran%2C+Jean-Philippe&rft.date=2015-05-01&rft.pub=IEEE&rft.volume=6&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFG.2015.7284871&rft.externalDocID=7284871