Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices
We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow po...
Saved in:
Published in | Proceedings of the International Conference on Distributed Computing Systems pp. 328 - 339 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6927 |
DOI | 10.1109/ICDCS.2017.226 |
Cover
Abstract | We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow portions of the neural network at the edge and end devices. When supported by a scalable distributed computing hierarchy, a DDNN can scale up in neural network size and scale out in geographical span. Due to its distributed nature, DDNNs enhance sensor fusion, system fault tolerance and data privacy for DNN applications. In implementing a DDNN, we map sections of a DNN onto a distributed computing hierarchy. By jointly training these sections, we minimize communication and resource usage for devices and maximize usefulness of extracted features which are utilized in the cloud. The resulting system has built-in support for automatic sensor fusion and fault tolerance. As a proof of concept, we show a DDNN can exploit geographical diversity of sensors to improve object recognition accuracy and reduce communication cost. In our experiment, compared with the traditional method of offloading raw sensor data to be processed in the cloud, DDNN locally processes most sensor data on end devices while achieving high accuracy and is able to reduce the communication cost by a factor of over 20x. |
---|---|
AbstractList | We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow portions of the neural network at the edge and end devices. When supported by a scalable distributed computing hierarchy, a DDNN can scale up in neural network size and scale out in geographical span. Due to its distributed nature, DDNNs enhance sensor fusion, system fault tolerance and data privacy for DNN applications. In implementing a DDNN, we map sections of a DNN onto a distributed computing hierarchy. By jointly training these sections, we minimize communication and resource usage for devices and maximize usefulness of extracted features which are utilized in the cloud. The resulting system has built-in support for automatic sensor fusion and fault tolerance. As a proof of concept, we show a DDNN can exploit geographical diversity of sensors to improve object recognition accuracy and reduce communication cost. In our experiment, compared with the traditional method of offloading raw sensor data to be processed in the cloud, DDNN locally processes most sensor data on end devices while achieving high accuracy and is able to reduce the communication cost by a factor of over 20x. |
Author | McDanel, Bradley Kung, H. T. Teerapittayanon, Surat |
Author_xml | – sequence: 1 givenname: Surat surname: Teerapittayanon fullname: Teerapittayanon, Surat email: steerapi@seas.harvard.edu organization: Harvard Univ., Cambridge, MA, USA – sequence: 2 givenname: Bradley surname: McDanel fullname: McDanel, Bradley email: mcdanel@fas.harvard.edu organization: Harvard Univ., Cambridge, MA, USA – sequence: 3 givenname: H. T. surname: Kung fullname: Kung, H. T. email: kung@harvard.edu organization: Harvard Univ., Cambridge, MA, USA |
BookMark | eNotjEtPg0AURsekJra1Wzdu5gcIzr3TeS0NoJI0dqGumwFuFUVoGKjx34uP5EvOtzlnwWZt1xJjFyBiAOGu8yRNHmMUYGJEfcJWzlhQ0mowDnHG5iC0jLRDc8YWIbwJIZTVcs7ytA5DXxfjQBVPiQ78gcbeNxOGz65_D3x7pJ4Pr8STphurq9-bVS_EfVvxrP2xjnVJ4Zyd7n0TaPXPJXu-zZ6S-2izvcuTm01UI6ghAiqtr8rCCWeNNVjaNRAolIgIZJXzAMW-NEauodTK-EojWVRWKQeTJ5fs8q9bE9Hu0Ncfvv_aGWfcNPkNPaJL8g |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICDCS.2017.226 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781538617922 1538617927 |
EndPage | 339 |
ExternalDocumentID | 7979979 |
Genre | orig-research |
GroupedDBID | 23M 29G 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i215t-1ec8adcb90987872c841e15232221e859a11bfc77341c657ad62e82585591dcb3 |
IEDL.DBID | RIE |
ISSN | 1063-6927 |
IngestDate | Wed Aug 27 02:19:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i215t-1ec8adcb90987872c841e15232221e859a11bfc77341c657ad62e82585591dcb3 |
OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:41718765 |
PageCount | 12 |
ParticipantIDs | ieee_primary_7979979 |
PublicationCentury | 2000 |
PublicationDate | 2017-June |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-June |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the International Conference on Distributed Computing Systems |
PublicationTitleAbbrev | ICDSC |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0005863 |
Score | 2.5633678 |
Snippet | We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 328 |
SubjectTerms | Artificial neural networks Cloud computing Computational modeling ddnn deep neural networks distributed computing hierarchies distributed deep neural networks dnn edge computing embedded dnn Performance evaluation sensor fusion Training |
Title | Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices |
URI | https://ieeexplore.ieee.org/document/7979979 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXhkY92Pdj0PCJigJkrCjXTtmzGSQXS7-NfbbgOM8eBpzZJmzWvXr6_ve98DuAuywGYdCCcT9rZKR6kjlAodP5ABVxjqLLa5w_MHNl2E98to2YLBPhcGESvyGbq2WcXy9UaV9qpsyG0Mios2tM0yq3O1DnSOmNVkehY4TPi8EWiknhjOklHybFlc3PWtiMKPMioViky6MN99vyaPvLtlkbrq65c0438HeAz9Q74eedoj0Qm0MD-F7q5gA2n-3x7MRlYm11a4Qk1GiFtitTnk2jwqMvgneTQrm5gzIUnWm1IPquZYvyKRuSbj3PaqtpY-LCbjl2TqNLUUnDcD6oVDUcVSq1R4IjbG81UcUjTYbQMtFONISErTTHFuUE2xiEvNfDTeY2w8Dmr6BWfQyTc5ngPxaGY2Ra61DFQYcpTCizJNKTOem2Y6u4CetcxqW8tlrBqjXP79-gqO7MzU7Ktr6BQfJd4YnC_S22qCvwFlB6Yl |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pCBeO3PXhkg-6jH-cBAQU0ERJupGvfGSMZRLeLv952G2KMB09rljRp2rXP3r7P87wI3fmJb1UHwkmEva3SYewIpQLH86XPFAQ64VY7PJnS4Ty4X4SLGmp_a2EAoCCfgWubRS5fr1Vur8o6zOagmNhD-6GJKnip1toROjgt6fTUd6jwWGXRSLqiM4p60bPlcTHXszYKPwqpFDgyaKDJdgQlfeTNzbPYVZ-_zBn_O8Qj1Nop9vDTNxYdoxqkJ6ixLdmAqx3cRKOeNcq1Na5A4x7ABlt3Drkyj4IO_oEfzbeNzV8hjlbrXLeLZl-_AJapxv3U9ioOlxaaD_qzaOhU1RScVwPrmUNAcalVLLqCm13qKR4QMOhtUy0EeCgkIXGiGDO4pmjIpKYemPiRm5iDmH7-Kaqn6xTOEO6SxByLTGvpqyBgIEU3TDQh1MRumurkHDXtzCw3pWHGspqUi79f36KD4WwyXo5H04dLdGhXqeRiXaF69p7DtUH9LL4pFvsLVtapeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=Distributed+Deep+Neural+Networks+Over+the+Cloud%2C+the+Edge+and+End+Devices&rft.au=Teerapittayanon%2C+Surat&rft.au=McDanel%2C+Bradley&rft.au=Kung%2C+H.+T.&rft.date=2017-06-01&rft.pub=IEEE&rft.issn=1063-6927&rft.spage=328&rft.epage=339&rft_id=info:doi/10.1109%2FICDCS.2017.226&rft.externalDocID=7979979 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6927&client=summon |