Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices

We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow po...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Conference on Distributed Computing Systems pp. 328 - 339
Main Authors Teerapittayanon, Surat, McDanel, Bradley, Kung, H. T.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2017
Subjects
Online AccessGet full text
ISSN1063-6927
DOI10.1109/ICDCS.2017.226

Cover

Abstract We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow portions of the neural network at the edge and end devices. When supported by a scalable distributed computing hierarchy, a DDNN can scale up in neural network size and scale out in geographical span. Due to its distributed nature, DDNNs enhance sensor fusion, system fault tolerance and data privacy for DNN applications. In implementing a DDNN, we map sections of a DNN onto a distributed computing hierarchy. By jointly training these sections, we minimize communication and resource usage for devices and maximize usefulness of extracted features which are utilized in the cloud. The resulting system has built-in support for automatic sensor fusion and fault tolerance. As a proof of concept, we show a DDNN can exploit geographical diversity of sensors to improve object recognition accuracy and reduce communication cost. In our experiment, compared with the traditional method of offloading raw sensor data to be processed in the cloud, DDNN locally processes most sensor data on end devices while achieving high accuracy and is able to reduce the communication cost by a factor of over 20x.
AbstractList We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow portions of the neural network at the edge and end devices. When supported by a scalable distributed computing hierarchy, a DDNN can scale up in neural network size and scale out in geographical span. Due to its distributed nature, DDNNs enhance sensor fusion, system fault tolerance and data privacy for DNN applications. In implementing a DDNN, we map sections of a DNN onto a distributed computing hierarchy. By jointly training these sections, we minimize communication and resource usage for devices and maximize usefulness of extracted features which are utilized in the cloud. The resulting system has built-in support for automatic sensor fusion and fault tolerance. As a proof of concept, we show a DDNN can exploit geographical diversity of sensors to improve object recognition accuracy and reduce communication cost. In our experiment, compared with the traditional method of offloading raw sensor data to be processed in the cloud, DDNN locally processes most sensor data on end devices while achieving high accuracy and is able to reduce the communication cost by a factor of over 20x.
Author McDanel, Bradley
Kung, H. T.
Teerapittayanon, Surat
Author_xml – sequence: 1
  givenname: Surat
  surname: Teerapittayanon
  fullname: Teerapittayanon, Surat
  email: steerapi@seas.harvard.edu
  organization: Harvard Univ., Cambridge, MA, USA
– sequence: 2
  givenname: Bradley
  surname: McDanel
  fullname: McDanel, Bradley
  email: mcdanel@fas.harvard.edu
  organization: Harvard Univ., Cambridge, MA, USA
– sequence: 3
  givenname: H. T.
  surname: Kung
  fullname: Kung, H. T.
  email: kung@harvard.edu
  organization: Harvard Univ., Cambridge, MA, USA
BookMark eNotjEtPg0AURsekJra1Wzdu5gcIzr3TeS0NoJI0dqGumwFuFUVoGKjx34uP5EvOtzlnwWZt1xJjFyBiAOGu8yRNHmMUYGJEfcJWzlhQ0mowDnHG5iC0jLRDc8YWIbwJIZTVcs7ytA5DXxfjQBVPiQ78gcbeNxOGz65_D3x7pJ4Pr8STphurq9-bVS_EfVvxrP2xjnVJ4Zyd7n0TaPXPJXu-zZ6S-2izvcuTm01UI6ghAiqtr8rCCWeNNVjaNRAolIgIZJXzAMW-NEauodTK-EojWVRWKQeTJ5fs8q9bE9Hu0Ncfvv_aGWfcNPkNPaJL8g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDCS.2017.226
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781538617922
1538617927
EndPage 339
ExternalDocumentID 7979979
Genre orig-research
GroupedDBID 23M
29G
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i215t-1ec8adcb90987872c841e15232221e859a11bfc77341c657ad62e82585591dcb3
IEDL.DBID RIE
ISSN 1063-6927
IngestDate Wed Aug 27 02:19:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i215t-1ec8adcb90987872c841e15232221e859a11bfc77341c657ad62e82585591dcb3
OpenAccessLink http://nrs.harvard.edu/urn-3:HUL.InstRepos:41718765
PageCount 12
ParticipantIDs ieee_primary_7979979
PublicationCentury 2000
PublicationDate 2017-June
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationTitle Proceedings of the International Conference on Distributed Computing Systems
PublicationTitleAbbrev ICDSC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0005863
Score 2.5633678
Snippet We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While...
SourceID ieee
SourceType Publisher
StartPage 328
SubjectTerms Artificial neural networks
Cloud computing
Computational modeling
ddnn
deep neural networks
distributed computing hierarchies
distributed deep neural networks
dnn
edge computing
embedded dnn
Performance evaluation
sensor fusion
Training
Title Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices
URI https://ieeexplore.ieee.org/document/7979979
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXhkY92Pdj0PCJigJkrCjXTtmzGSQXS7-NfbbgOM8eBpzZJmzWvXr6_ve98DuAuywGYdCCcT9rZKR6kjlAodP5ABVxjqLLa5w_MHNl2E98to2YLBPhcGESvyGbq2WcXy9UaV9qpsyG0Mios2tM0yq3O1DnSOmNVkehY4TPi8EWiknhjOklHybFlc3PWtiMKPMioViky6MN99vyaPvLtlkbrq65c0438HeAz9Q74eedoj0Qm0MD-F7q5gA2n-3x7MRlYm11a4Qk1GiFtitTnk2jwqMvgneTQrm5gzIUnWm1IPquZYvyKRuSbj3PaqtpY-LCbjl2TqNLUUnDcD6oVDUcVSq1R4IjbG81UcUjTYbQMtFONISErTTHFuUE2xiEvNfDTeY2w8Dmr6BWfQyTc5ngPxaGY2Ra61DFQYcpTCizJNKTOem2Y6u4CetcxqW8tlrBqjXP79-gqO7MzU7Ktr6BQfJd4YnC_S22qCvwFlB6Yl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pCBeO3PXhkg-6jH-cBAQU0ERJupGvfGSMZRLeLv952G2KMB09rljRp2rXP3r7P87wI3fmJb1UHwkmEva3SYewIpQLH86XPFAQ64VY7PJnS4Ty4X4SLGmp_a2EAoCCfgWubRS5fr1Vur8o6zOagmNhD-6GJKnip1toROjgt6fTUd6jwWGXRSLqiM4p60bPlcTHXszYKPwqpFDgyaKDJdgQlfeTNzbPYVZ-_zBn_O8Qj1Nop9vDTNxYdoxqkJ6ixLdmAqx3cRKOeNcq1Na5A4x7ABlt3Drkyj4IO_oEfzbeNzV8hjlbrXLeLZl-_AJapxv3U9ioOlxaaD_qzaOhU1RScVwPrmUNAcalVLLqCm13qKR4QMOhtUy0EeCgkIXGiGDO4pmjIpKYemPiRm5iDmH7-Kaqn6xTOEO6SxByLTGvpqyBgIEU3TDQh1MRumurkHDXtzCw3pWHGspqUi79f36KD4WwyXo5H04dLdGhXqeRiXaF69p7DtUH9LL4pFvsLVtapeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=Distributed+Deep+Neural+Networks+Over+the+Cloud%2C+the+Edge+and+End+Devices&rft.au=Teerapittayanon%2C+Surat&rft.au=McDanel%2C+Bradley&rft.au=Kung%2C+H.+T.&rft.date=2017-06-01&rft.pub=IEEE&rft.issn=1063-6927&rft.spage=328&rft.epage=339&rft_id=info:doi/10.1109%2FICDCS.2017.226&rft.externalDocID=7979979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6927&client=summon