Risk-aware Control for Robots with Non-Gaussian Belief Spaces

This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 11661 - 11667
Main Authors Vahs, Matti, Tumova, Jana
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text
DOI10.1109/ICRA57147.2024.10611412

Cover

Abstract This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible states. Namely, Particle Filters (PFs) can handle arbitrary non-Gaussian distributions in the robot's state. In this work, we define the belief state and belief dynamics for continuous-discrete PFs and construct safe sets in the underlying belief space. We design a controller that provably keeps the robot's belief state within this safe set. As a result, we ensure that the risk of the unknown robot's state violating a safety specification, such as avoiding a dangerous area, is bounded. We provide an open-source implementation as a ROS2 package and evaluate the solution in simulations and hardware experiments involving high-dimensional belief spaces.
AbstractList This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible states. Namely, Particle Filters (PFs) can handle arbitrary non-Gaussian distributions in the robot's state. In this work, we define the belief state and belief dynamics for continuous-discrete PFs and construct safe sets in the underlying belief space. We design a controller that provably keeps the robot's belief state within this safe set. As a result, we ensure that the risk of the unknown robot's state violating a safety specification, such as avoiding a dangerous area, is bounded. We provide an open-source implementation as a ROS2 package and evaluate the solution in simulations and hardware experiments involving high-dimensional belief spaces.
Author Vahs, Matti
Tumova, Jana
Author_xml – sequence: 1
  givenname: Matti
  surname: Vahs
  fullname: Vahs, Matti
  email: vahs@kth.se
  organization: KTH Royal Institute of Technology,Division of Robotics, Perception and Learning,Stockholm,Sweden
– sequence: 2
  givenname: Jana
  surname: Tumova
  fullname: Tumova, Jana
  email: tumova@kth.se
  organization: KTH Royal Institute of Technology,Division of Robotics, Perception and Learning,Stockholm,Sweden
BookMark eNo1j8FKxDAUACPoQdf9A8H8QGtemua1Bw9r0XVhUah6Xl7jCwZrsjSVxb9XUE9zG2bOxHFMkYW4BFUCqPZq0_WrGsFgqZU2JSgLYEAfiWWLbVPVqmpMjeZUXPchvxd0oIlll-I8pVH6NMk-DWnO8hDmN_mQYrGmz5wDRXnDY2Avn_bkOJ-LE09j5uUfF-Ll7va5uy-2j-tNt9oWQYOZC7IG3StZVRn2AOgH5uYnAxmYVYvGOuuQjKGBSA-uYTdwg61Fr5HIVwtx8esNzLzbT-GDpq_d_1X1DT_iR1Y
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA57147.2024.10611412
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384574
EndPage 11667
ExternalDocumentID 10611412
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i214t-a647cda6034ef117fbee89837e1ee09746c6c7a44abaa2bc8ecbe87967f27aaf3
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i214t-a647cda6034ef117fbee89837e1ee09746c6c7a44abaa2bc8ecbe87967f27aaf3
PageCount 7
ParticipantIDs ieee_primary_10611412
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9041047
Snippet This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and...
SourceID ieee
SourceType Publisher
StartPage 11661
SubjectTerms Aerospace electronics
Hardware
Particle filters
Probabilistic logic
Robot sensing systems
Sensors
Uncertainty
Title Risk-aware Control for Robots with Non-Gaussian Belief Spaces
URI https://ieeexplore.ieee.org/document/10611412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77JwWu2m91skj140GKtgkWqhd7KJJ1AKXRLu4vgrzfZbRUFwVsIgWQYknl9X4aQa-N9WnQSGMbaMP_6CQbcADOA0urEcVWTxJ4Hsj8ST-NsvCGr11wYRKzBZxiFYV3Lnxa2CqmyTghfuAg9hXeVyhuy1gazxeO889gd3mZ-N-XDvkRE29U_-qbUZqO3TwbbDRu0yDyqShPZj19_Mf77RAek_c3Qoy9ftueQ7ODiiNwMZ-s5g3dYIe02EHTqfVI6LExRrmlIudJBsWAPUK0Dd5LeofdAHX1dBlxWm4x692_dPtu0R2CzhIuSgRTKTkHGqUDHuXIGUec-4ESOGPs4QVppFQgBBiAxVqM1qFUulUsUgEuPSWtRLPCEUH_JE4UuT5E74aYIQludZVabzDmZJaekHWSfLJsfMCZbsc_-mD8ne0EFocrO0wvSKlcVXnrjXZqrWmmfy3GbPw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_CarmnTpD140OHcdCsyN9htJNkLjEE7thbBv96k3RQFwVsIgeQRkve-l-_LQ-hW2ZgWDJcE_FgRe_sxIqmSREngOg4MFZVIbJDy7pg9T6LJRqxeaWEAoCKfgeea1Vv-LNelS5W1HHyhzNUU3o0srBC1XGvD2qJ-0uq1h_eRnU9Y4Bcwbzv-R-WUynF0DlC6nbLmiyy8slCe_vj1G-O_13SImt8aPfz65X2O0A5kx-huOF8viHyXK8DtmoSObVSKh7nKizV2SVec5hl5kuXaqSfxA9gY1OC3pWNmNdG48zhqd8mmQAKZB5QVRHIm9ExyP2RgKBVGAcSJhZxAAXyLFLjmWkjGpJIyUDoGrSAWCRcmEFKa8AQ1sjyDU4TtMQ8EmCQEapiZgWSxjqNIxyoyhkfBGWo626fL-g-M6dbs8z_6b9BedzToT_u99OUC7bvtcG_uNLxEjWJVwpV15YW6rjbwEyV7npA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Risk-aware+Control+for+Robots+with+Non-Gaussian+Belief+Spaces&rft.au=Vahs%2C+Matti&rft.au=Tumova%2C+Jana&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=11661&rft.epage=11667&rft_id=info:doi/10.1109%2FICRA57147.2024.10611412&rft.externalDocID=10611412