Risk-aware Control for Robots with Non-Gaussian Belief Spaces
This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible...
Saved in:
Published in | 2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 11661 - 11667 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.05.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICRA57147.2024.10611412 |
Cover
Abstract | This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible states. Namely, Particle Filters (PFs) can handle arbitrary non-Gaussian distributions in the robot's state. In this work, we define the belief state and belief dynamics for continuous-discrete PFs and construct safe sets in the underlying belief space. We design a controller that provably keeps the robot's belief state within this safe set. As a result, we ensure that the risk of the unknown robot's state violating a safety specification, such as avoiding a dangerous area, is bounded. We provide an open-source implementation as a ROS2 package and evaluate the solution in simulations and hardware experiments involving high-dimensional belief spaces. |
---|---|
AbstractList | This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible states. Namely, Particle Filters (PFs) can handle arbitrary non-Gaussian distributions in the robot's state. In this work, we define the belief state and belief dynamics for continuous-discrete PFs and construct safe sets in the underlying belief space. We design a controller that provably keeps the robot's belief state within this safe set. As a result, we ensure that the risk of the unknown robot's state violating a safety specification, such as avoiding a dangerous area, is bounded. We provide an open-source implementation as a ROS2 package and evaluate the solution in simulations and hardware experiments involving high-dimensional belief spaces. |
Author | Vahs, Matti Tumova, Jana |
Author_xml | – sequence: 1 givenname: Matti surname: Vahs fullname: Vahs, Matti email: vahs@kth.se organization: KTH Royal Institute of Technology,Division of Robotics, Perception and Learning,Stockholm,Sweden – sequence: 2 givenname: Jana surname: Tumova fullname: Tumova, Jana email: tumova@kth.se organization: KTH Royal Institute of Technology,Division of Robotics, Perception and Learning,Stockholm,Sweden |
BookMark | eNo1j8FKxDAUACPoQdf9A8H8QGtemua1Bw9r0XVhUah6Xl7jCwZrsjSVxb9XUE9zG2bOxHFMkYW4BFUCqPZq0_WrGsFgqZU2JSgLYEAfiWWLbVPVqmpMjeZUXPchvxd0oIlll-I8pVH6NMk-DWnO8hDmN_mQYrGmz5wDRXnDY2Avn_bkOJ-LE09j5uUfF-Ll7va5uy-2j-tNt9oWQYOZC7IG3StZVRn2AOgH5uYnAxmYVYvGOuuQjKGBSA-uYTdwg61Fr5HIVwtx8esNzLzbT-GDpq_d_1X1DT_iR1Y |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA57147.2024.10611412 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350384574 |
EndPage | 11667 |
ExternalDocumentID | 10611412 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i214t-a647cda6034ef117fbee89837e1ee09746c6c7a44abaa2bc8ecbe87967f27aaf3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 14 05:40:31 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i214t-a647cda6034ef117fbee89837e1ee09746c6c7a44abaa2bc8ecbe87967f27aaf3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10611412 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-13 |
PublicationDateYYYYMMDD | 2024-05-13 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9041047 |
Snippet | This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from un-modeled dynamics and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 11661 |
SubjectTerms | Aerospace electronics Hardware Particle filters Probabilistic logic Robot sensing systems Sensors Uncertainty |
Title | Risk-aware Control for Robots with Non-Gaussian Belief Spaces |
URI | https://ieeexplore.ieee.org/document/10611412 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77JwWu2m91skj140GKtgkWqhd7KJJ1AKXRLu4vgrzfZbRUFwVsIgWQYknl9X4aQa-N9WnQSGMbaMP_6CQbcADOA0urEcVWTxJ4Hsj8ST-NsvCGr11wYRKzBZxiFYV3Lnxa2CqmyTghfuAg9hXeVyhuy1gazxeO889gd3mZ-N-XDvkRE29U_-qbUZqO3TwbbDRu0yDyqShPZj19_Mf77RAek_c3Qoy9ftueQ7ODiiNwMZ-s5g3dYIe02EHTqfVI6LExRrmlIudJBsWAPUK0Dd5LeofdAHX1dBlxWm4x692_dPtu0R2CzhIuSgRTKTkHGqUDHuXIGUec-4ESOGPs4QVppFQgBBiAxVqM1qFUulUsUgEuPSWtRLPCEUH_JE4UuT5E74aYIQludZVabzDmZJaekHWSfLJsfMCZbsc_-mD8ne0EFocrO0wvSKlcVXnrjXZqrWmmfy3GbPw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_CarmnTpD140OHcdCsyN9htJNkLjEE7thbBv96k3RQFwVsIgeQRkve-l-_LQ-hW2ZgWDJcE_FgRe_sxIqmSREngOg4MFZVIbJDy7pg9T6LJRqxeaWEAoCKfgeea1Vv-LNelS5W1HHyhzNUU3o0srBC1XGvD2qJ-0uq1h_eRnU9Y4Bcwbzv-R-WUynF0DlC6nbLmiyy8slCe_vj1G-O_13SImt8aPfz65X2O0A5kx-huOF8viHyXK8DtmoSObVSKh7nKizV2SVec5hl5kuXaqSfxA9gY1OC3pWNmNdG48zhqd8mmQAKZB5QVRHIm9ExyP2RgKBVGAcSJhZxAAXyLFLjmWkjGpJIyUDoGrSAWCRcmEFKa8AQ1sjyDU4TtMQ8EmCQEapiZgWSxjqNIxyoyhkfBGWo626fL-g-M6dbs8z_6b9BedzToT_u99OUC7bvtcG_uNLxEjWJVwpV15YW6rjbwEyV7npA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Risk-aware+Control+for+Robots+with+Non-Gaussian+Belief+Spaces&rft.au=Vahs%2C+Matti&rft.au=Tumova%2C+Jana&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=11661&rft.epage=11667&rft_id=info:doi/10.1109%2FICRA57147.2024.10611412&rft.externalDocID=10611412 |