DeFlow: Decoder of Scene Flow Network in Autonomous Driving

Scene flow estimation determines a scene's 3D motion field, by predicting the motion of points in the scene, especially for aiding tasks in autonomous driving. Many networks with large-scale point clouds as input use voxelization to create a pseudo-image for real-time running. However, the voxe...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Conference on Robotics and Automation (ICRA) pp. 2105 - 2111
Main Authors Zhang, Qingwen, Yang, Yi, Fang, Heng, Geng, Ruoyu, Jensfelt, Patric
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text
DOI10.1109/ICRA57147.2024.10610278

Cover

Abstract Scene flow estimation determines a scene's 3D motion field, by predicting the motion of points in the scene, especially for aiding tasks in autonomous driving. Many networks with large-scale point clouds as input use voxelization to create a pseudo-image for real-time running. However, the voxelization process often results in the loss of point-specific features. This gives rise to a challenge in recovering those features for scene flow tasks. Our paper introduces DeFlow which enables a transition from voxel-based features to point features using Gated Recurrent Unit (GRU) refinement. To further enhance scene flow estimation performance, we formulate a novel loss function that accounts for the data imbalance between static and dynamic points. Evaluations on the Argoverse 2 scene flow task reveal that DeFlow achieves state-of-the-art results on large-scale point cloud data, demonstrating that our network has better performance and efficiency compared to others. The code is available at https://github.com/KTH-RPL/deflow.
AbstractList Scene flow estimation determines a scene's 3D motion field, by predicting the motion of points in the scene, especially for aiding tasks in autonomous driving. Many networks with large-scale point clouds as input use voxelization to create a pseudo-image for real-time running. However, the voxelization process often results in the loss of point-specific features. This gives rise to a challenge in recovering those features for scene flow tasks. Our paper introduces DeFlow which enables a transition from voxel-based features to point features using Gated Recurrent Unit (GRU) refinement. To further enhance scene flow estimation performance, we formulate a novel loss function that accounts for the data imbalance between static and dynamic points. Evaluations on the Argoverse 2 scene flow task reveal that DeFlow achieves state-of-the-art results on large-scale point cloud data, demonstrating that our network has better performance and efficiency compared to others. The code is available at https://github.com/KTH-RPL/deflow.
Author Geng, Ruoyu
Jensfelt, Patric
Zhang, Qingwen
Fang, Heng
Yang, Yi
Author_xml – sequence: 1
  givenname: Qingwen
  surname: Zhang
  fullname: Zhang, Qingwen
  email: qingwen@kth.se
  organization: KTH Royal Institute of Technology,Division of Robotics, Perception, and Learning (RPL),Stockholm,Sweden,114 28
– sequence: 2
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: KTH Royal Institute of Technology,Division of Robotics, Perception, and Learning (RPL),Stockholm,Sweden,114 28
– sequence: 3
  givenname: Heng
  surname: Fang
  fullname: Fang, Heng
  organization: KTH Royal Institute of Technology,Division of Robotics, Perception, and Learning (RPL),Stockholm,Sweden,114 28
– sequence: 4
  givenname: Ruoyu
  surname: Geng
  fullname: Geng, Ruoyu
  organization: Hong Kong University of Science and Technology,System Hub,Guangzhou,China
– sequence: 5
  givenname: Patric
  surname: Jensfelt
  fullname: Jensfelt, Patric
  organization: KTH Royal Institute of Technology,Division of Robotics, Perception, and Learning (RPL),Stockholm,Sweden,114 28
BookMark eNo1j91KwzAYQCPohc69gWBeoDVfmq9J9Kq0TgdDwZ_rkaZfJbglknUO315EvTpwLg6cM3YcUyTGLkGUAMJeLdunBjUoXUohVQmiBiG1OWJzq62pUFRGoVan7KajxSYdrnlHPg2UeRr5s6dI_EfzB5oOKb_zEHmzn1JM27Tf8S6HzxDfztnJ6DY7mv9xxl4Xty_tfbF6vFu2zaoIEtRUGA81SqOtMDVgJSRqHA2YwUuFg_a-7p0bvRgR-14N4KlXxjocnEarrK9m7OK3G4ho_ZHD1uWv9f9T9Q3-D0Uj
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA57147.2024.10610278
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384574
EndPage 2111
ExternalDocumentID 10610278
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i214t-8c165287908615302575f818dc245d7cc6baafc0f55bb4d1ceb489a5da75949c3
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i214t-8c165287908615302575f818dc245d7cc6baafc0f55bb4d1ceb489a5da75949c3
PageCount 7
ParticipantIDs ieee_primary_10610278
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9745755
Snippet Scene flow estimation determines a scene's 3D motion field, by predicting the motion of points in the scene, especially for aiding tasks in autonomous driving....
SourceID ieee
SourceType Publisher
StartPage 2105
SubjectTerms Estimation
Feature extraction
Point cloud compression
Real-time systems
Sensor fusion
Sensors
Three-dimensional displays
Title DeFlow: Decoder of Scene Flow Network in Autonomous Driving
URI https://ieeexplore.ieee.org/document/10610278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uTz6pOPE3efC1XdNemlafxuaYgkXUwd5GfhWG0o7RIvjXm2s7RUHwLYRAEgL57ru7746QK-HMCplEGNU1woPIaA9R0XO2g1GhCHKp0Q_5kMWzOdwv-KITqzdaGGttk3xmfRw2sXxT6hpdZUOkLxgp65GeSOJWrNXlbLEgHd6Nn0ZcMBCO9oXgb1f_6JvSwMZ0j2TbDdtskVe_rpSvP37VYvz3ifbJ4FuhRx-_sOeA7NjikNxM7PStfL-mE4tK9Q0tc_qs3WdGcZpmbcY3XRV0VFcoZnCsn042K_QpDMh8evsynnldcwRvFTKovESzmDu6kzpOwrD1j7O7coe-RofAjdA6VlLmOsg5VwoM01ZBkkpupOAppDo6Iv2iLOwxoW45D1USiDy2IECn0kQAimFpvQQsPyEDvPly3da_WG4vffrH_BnZxQfAGDuLzkm_2tT2wkF3pS6bJ_sEScSXgA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46H_RJxYm_zYOv7Zr20rT6NDbHplsR3cC30fwoDKWV0SL415trN0VB8C2EQBIC-e67u--OkCthzYo0CjCqq4UDgVYOoqJjbQctfeFlqUI_5CQJhzO4e-bPK7F6rYUxxtTJZ8bFYR3L14Wq0FXWQfqCkbJNssUBgDdyrVXWFvPizqj32OWCgbDEzwd3vf5H55QaOAa7JFlv2eSLvLhVKV318asa47_PtEfa3xo9-vCFPvtkw-QH5KZvBq_F-zXtG9SqL2mR0SdlvzOK0zRpcr7pIqfdqkQ5g-X9tL9coFehTWaD22lv6KzaIzgLn0HpRIqF3BKe2LIShs1_rOWVWfzVygeuhVKhTNNMeRnnUoJmykiI4pTrVPAYYhUcklZe5OaIULuc-zLyRBYaEKDiVAcAkmFxvQgMPyZtvPn8ramAMV9f-uSP-UuyPZxOxvPxKLk_JTv4GBhxZ8EZaZXLypxbIC_lRf18n20wms0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=DeFlow%3A+Decoder+of+Scene+Flow+Network+in+Autonomous+Driving&rft.au=Zhang%2C+Qingwen&rft.au=Yang%2C+Yi&rft.au=Fang%2C+Heng&rft.au=Geng%2C+Ruoyu&rft.date=2024-05-13&rft.pub=IEEE&rft.spage=2105&rft.epage=2111&rft_id=info:doi/10.1109%2FICRA57147.2024.10610278&rft.externalDocID=10610278