Learning Through Utility Optimization in Regression Tasks
Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have been studied extensively. Utility-based learning provides a generalization of purely cost-based approaches that considers both costs and benef...
Saved in:
| Published in | 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA) pp. 30 - 39 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2017
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/DSAA.2017.63 |
Cover
| Abstract | Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have been studied extensively. Utility-based learning provides a generalization of purely cost-based approaches that considers both costs and benefits, enabling application to domains with complex cost-benefit settings. However, there is little work on utility- or cost-based learning for regression. In this paper, we formally define the problem of utility-based regression and propose a strategy for maximizing the utility of regression models. We verify our findings in a large set of experiments that show the advantage of our proposal in a diverse set of domains, learning algorithms and cost/benefit settings. |
|---|---|
| AbstractList | Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have been studied extensively. Utility-based learning provides a generalization of purely cost-based approaches that considers both costs and benefits, enabling application to domains with complex cost-benefit settings. However, there is little work on utility- or cost-based learning for regression. In this paper, we formally define the problem of utility-based regression and propose a strategy for maximizing the utility of regression models. We verify our findings in a large set of experiments that show the advantage of our proposal in a diverse set of domains, learning algorithms and cost/benefit settings. |
| Author | Branco, Paula Rau, Markus Michael Ribeiro, Rita P. Torgo, Luis Pfahringer, Bernhard Frank, Eibe |
| Author_xml | – sequence: 1 givenname: Paula surname: Branco fullname: Branco, Paula email: paula.branco@dcc.fc.up.pt organization: LIAAD, Univ. do Porto, Porto, Portugal – sequence: 2 givenname: Luis surname: Torgo fullname: Torgo, Luis email: ltorgo@dcc.fc.up.pt organization: LIAAD, Univ. do Porto, Porto, Portugal – sequence: 3 givenname: Rita P. surname: Ribeiro fullname: Ribeiro, Rita P. email: rpribeiro@dcc.fc.up.pt organization: LIAAD, Univ. do Porto, Porto, Portugal – sequence: 4 givenname: Eibe surname: Frank fullname: Frank, Eibe email: eibe@waikato.ac.nz organization: Dept. of Comput. Sci., Univ. of Waikato, Hamilton, New Zealand – sequence: 5 givenname: Bernhard surname: Pfahringer fullname: Pfahringer, Bernhard email: b.pfahringer@auckland.ac.nz organization: Dept. of Comput. Sci., Univ. of Auckland, Auckland, New Zealand – sequence: 6 givenname: Markus Michael surname: Rau fullname: Rau, Markus Michael email: markusmichael.rau@gmail.com organization: Max-Planck-Inst. fυr Extraterrestrische Phys., Ludwig-Maximilians-Univ. Munchen, Munich, Germany |
| BookMark | eNo9j0FLw0AUhFdQUGtu3rzkDyS-3c0mu8dQtQqBgqbn8JK8tKvppmRTpP56Wyoyh2GYj4G5ZZducMTYPYeYczCPTx95HgvgWZzKCxaYTHMFBhRAoq9Z4P0nAHCT6iSBG2YKwtFZtw7LzTjs15twNdneTodwuZvs1v7gZAcXWhe-03ok70-pRP_l79hVh72n4M9nbPXyXM5fo2K5eJvnRWQFl1MkBJLWTaI5NV2rM9VxwLoTSrUdNXWCptYEbZMqSUfpFJMMjkXd8VpqLeSMRefdvdvh4Rv7vtqNdovjoeJQnS5XrUesTperVB75hzNviegf1UKZLOXyF2CYVtE |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| DOI | 10.1109/DSAA.2017.63 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL(IEEE/IET Electronic Library ) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781509050048 1509050043 |
| EndPage | 39 |
| ExternalDocumentID | oai:researchcommons.waikato.ac.nz:10289/12515 8259761 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL ADTOC UNPAY |
| ID | FETCH-LOGICAL-i213t-22ae88c481ecfd875f10abf255dfecb4a9b8e0dc653e3e386a470ecbbf1b38823 |
| IEDL.DBID | UNPAY |
| IngestDate | Sun Oct 26 04:11:46 EDT 2025 Wed Aug 27 02:25:12 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i213t-22ae88c481ecfd875f10abf255dfecb4a9b8e0dc653e3e386a470ecbbf1b38823 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://researchcommons.waikato.ac.nz/bitstreams/b3cbfa41-4aa3-4333-b5b4-141e8160ac06/download |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1109_dsaa_2017_63 ieee_primary_8259761 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Oct. |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA) |
| PublicationTitleAbbrev | DSAA |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001968440 |
| Score | 1.6744832 |
| Snippet | Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 30 |
| SubjectTerms | Computer science Electronic mail Measurement Optimization Predictive models Surface treatment |
| SummonAdditionalLinks | – databaseName: IEL(IEEE/IET Electronic Library ) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zF_UydRPnL3IQT3ZL2yxLjkMdQ5iKbrBbSdovQza74Vpk_vUmbdeJeJBeCmkhfCH58pL33ofQla-kFh0QTsQoONQLfYe7oM1iaN3XlPR05sA3fGSDMX2YdCYVdFNqYQAgI59By75md_nRIkztUVnboBmTPQ3W2elylmu1tucpgnFKScltF-27117Pcre6LevxmdVO2Ue7abyU6085n_9II_0aGm46kLNHZq00Ua3w65c34397eIAaW8Eefi5T0SGqQHyEapuKDbiYwHUkCjvVKR7l9XnwOLHk2DV-MkvHe6HJxG8xfoFpzpCN8UiuZqsGGvfvR7cDpyie4Lx5rp84nieB85CayIc6MqhEu0QqbRBEpCFUVArFgUQh6_hgHs4k7RLToLSrfLPt9o9RNV7EcIKwvf91JQfmRUA14VISK7iNXAJKAJAmqttIBMvcHyMogtBE12Wwy7YMcxARRCspAzs4AfNP__7_DO3ZD3Lm3DmqJh8pXJgdQKIus6H_Bus3slI priority: 102 providerName: IEEE |
| Title | Learning Through Utility Optimization in Regression Tasks |
| URI | https://ieeexplore.ieee.org/document/8259761 https://researchcommons.waikato.ac.nz/bitstreams/b3cbfa41-4aa3-4333-b5b4-141e8160ac06/download |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTgIxEG0UDsaLGjBilOzBeFtot92yezRGQkxEYiDB02a6nSIBFiJLDF78dVtY0XjyYnpsD-1MM52XzntDyBVXYOIQY19Lgb4IUu5HDI0Nhk59TUFgNgp8D13ZGYj7YTgsWpU6LkwhcfNizT1zZi-INMW_jBrnjkIBs2VT8VQZEBYAAXDH--G-CpXwmWAYMUkhpbKpneD8HPQ-KcvQ5uolUh50ezfPuwr4uKmX4OSHWKvhlEA3HVYOycEqW8D6DabTH49N-4h8fG1zW2Myaaxy1Ujffyk4_t85jkn1mwjo9XZP3AnZw6xC4kKTdeT1t01-vEHuKmzX3qONP7OC2OmNM-8JR9sy28zrw3KyrJJB-65_2_GLDgz-OGA894MAMIpSYd2XGm2hjWEUlLEwRBtMlYBYRUh1KkOOdkQSRIvaCWWY4jZ356eklM0zPCOe-0RmEKEMNApDIwDqWLuaUVQxIq2RirN9stiKbCQWudpMidXI9c4Xu7kNcKFx4nyXON8lkp__deEFKeWvK7y0uUSu6hvCX724Fp90ptEc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH6IHtTL_InzZw7iyc60TWtyHOqYuqnoBt5K0r6MoXbiOmT-9SZt14l4kF4KaSG8tHn5ku_7HsCxr6QWAQonCRk6zIt9h7uozWRo3deU9HTuwNe9C9t9dvMcPC_AaaWFQcScfIYNe5uf5SejeGK3ys4MmjHZ02CdpYAxFhRqrfmOigg5Y7Rit4uzy6dm07K3zhvW5TOvnrIKy5P0XU4_5evrj0TSqkF31oWCP_LSmGSqEX_9cmf8bx_XYGsu2SMPVTJahwVMN6A2q9lAyl94E0RpqDogvaJCD-lnlh47Jfdm8ngrVZlkmJJHHBQc2ZT05PhlvAX91lXvou2U5ROcoef6meN5EjmPmYl9rBODS7RLpdIGQyQaY8WkUBxpEoeBj-bioWTn1DQo7SrfLLz9bVhMRynuALEnwK7kGHoJMk25lNRKbhOXohKItA6bNhLRe-GQEZVBqMNJFeyqLUcdVETJWMrIDk4U-rt_v38Ey-1etxN1ru9u92DFPlzw6PZhMfuY4IFZD2TqMP8MvgFtlbWf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTgIxEG0UDsaLGjBq1OzBeFtot92yezRGQkxEYiDB02a6nSIBFuIuMXjx121hRePJi-mxPbQzzXReOu8NIVdcgYlDjH0tBfoiSLkfMTQ2GDr1NQWBWSvwPXRlZyDuh-GwbFXquDClxM2LNffMmb0k0pT_MmpcOAoFzPKm4qkyICwAAuCO98N9FSrhM8EwYpJCSmVTO8H5OehdUpWhzdUrpDro9m6etxXwcVPn4OSHWKvhlEDXHVb2yd4yW8DqDabTH49N-4B8fG1zU2MyaSwL1Ujffyk4_t85Dkn9mwjo9bZP3BHZwaxG4lKTdeT1N01-vEHhKmxX3qONP7OS2OmNM-8JR5sy28zrQz7J62TQvuvfdvyyA4M_Dhgv_CAAjKJUWPelRltoYxgFZSwM0QZTJSBWEVKdypCjHZEE0aJ2QhmmuM3d-TGpZPMMT4jnPpEZRCgDjcLQCIA61q5mFFWMSE9Jzdk-WWxENhKLXG2mxE7J9dYX27k1cKFx4nyXON8lkp_9deE5qRSvS7ywuUShLssL8QmTRNAb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=DSAA+2017+%3A+proceedings+%3A+2017+International+Conference+on+Data+Science+and+Advanced+Analytics+%3A+Tokyo%2C+Japan%2C+19-21+October+2017&rft.atitle=Learning+Through+Utility+Optimization+in+Regression+Tasks&rft.au=Branco%2C+Paula&rft.au=Torgo%2C+Luis&rft.au=Ribeiro%2C+Rita+P.&rft.au=Frank%2C+Eibe&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=30&rft.epage=39&rft_id=info:doi/10.1109%2FDSAA.2017.63&rft.externalDocID=8259761 |