Learning Through Utility Optimization in Regression Tasks

Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have been studied extensively. Utility-based learning provides a generalization of purely cost-based approaches that considers both costs and benef...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA) pp. 30 - 39
Main Authors Branco, Paula, Torgo, Luis, Ribeiro, Rita P., Frank, Eibe, Pfahringer, Bernhard, Rau, Markus Michael
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text
DOI10.1109/DSAA.2017.63

Cover

Abstract Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have been studied extensively. Utility-based learning provides a generalization of purely cost-based approaches that considers both costs and benefits, enabling application to domains with complex cost-benefit settings. However, there is little work on utility- or cost-based learning for regression. In this paper, we formally define the problem of utility-based regression and propose a strategy for maximizing the utility of regression models. We verify our findings in a large set of experiments that show the advantage of our proposal in a diverse set of domains, learning algorithms and cost/benefit settings.
AbstractList Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have been studied extensively. Utility-based learning provides a generalization of purely cost-based approaches that considers both costs and benefits, enabling application to domains with complex cost-benefit settings. However, there is little work on utility- or cost-based learning for regression. In this paper, we formally define the problem of utility-based regression and propose a strategy for maximizing the utility of regression models. We verify our findings in a large set of experiments that show the advantage of our proposal in a diverse set of domains, learning algorithms and cost/benefit settings.
Author Branco, Paula
Rau, Markus Michael
Ribeiro, Rita P.
Torgo, Luis
Pfahringer, Bernhard
Frank, Eibe
Author_xml – sequence: 1
  givenname: Paula
  surname: Branco
  fullname: Branco, Paula
  email: paula.branco@dcc.fc.up.pt
  organization: LIAAD, Univ. do Porto, Porto, Portugal
– sequence: 2
  givenname: Luis
  surname: Torgo
  fullname: Torgo, Luis
  email: ltorgo@dcc.fc.up.pt
  organization: LIAAD, Univ. do Porto, Porto, Portugal
– sequence: 3
  givenname: Rita P.
  surname: Ribeiro
  fullname: Ribeiro, Rita P.
  email: rpribeiro@dcc.fc.up.pt
  organization: LIAAD, Univ. do Porto, Porto, Portugal
– sequence: 4
  givenname: Eibe
  surname: Frank
  fullname: Frank, Eibe
  email: eibe@waikato.ac.nz
  organization: Dept. of Comput. Sci., Univ. of Waikato, Hamilton, New Zealand
– sequence: 5
  givenname: Bernhard
  surname: Pfahringer
  fullname: Pfahringer, Bernhard
  email: b.pfahringer@auckland.ac.nz
  organization: Dept. of Comput. Sci., Univ. of Auckland, Auckland, New Zealand
– sequence: 6
  givenname: Markus Michael
  surname: Rau
  fullname: Rau, Markus Michael
  email: markusmichael.rau@gmail.com
  organization: Max-Planck-Inst. fυr Extraterrestrische Phys., Ludwig-Maximilians-Univ. Munchen, Munich, Germany
BookMark eNo9j0FLw0AUhFdQUGtu3rzkDyS-3c0mu8dQtQqBgqbn8JK8tKvppmRTpP56Wyoyh2GYj4G5ZZducMTYPYeYczCPTx95HgvgWZzKCxaYTHMFBhRAoq9Z4P0nAHCT6iSBG2YKwtFZtw7LzTjs15twNdneTodwuZvs1v7gZAcXWhe-03ok70-pRP_l79hVh72n4M9nbPXyXM5fo2K5eJvnRWQFl1MkBJLWTaI5NV2rM9VxwLoTSrUdNXWCptYEbZMqSUfpFJMMjkXd8VpqLeSMRefdvdvh4Rv7vtqNdovjoeJQnS5XrUesTperVB75hzNviegf1UKZLOXyF2CYVtE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/DSAA.2017.63
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL(IEEE/IET Electronic Library )
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509050048
1509050043
EndPage 39
ExternalDocumentID oai:researchcommons.waikato.ac.nz:10289/12515
8259761
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i213t-22ae88c481ecfd875f10abf255dfecb4a9b8e0dc653e3e386a470ecbbf1b38823
IEDL.DBID UNPAY
IngestDate Sun Oct 26 04:11:46 EDT 2025
Wed Aug 27 02:25:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i213t-22ae88c481ecfd875f10abf255dfecb4a9b8e0dc653e3e386a470ecbbf1b38823
OpenAccessLink https://proxy.k.utb.cz/login?url=https://researchcommons.waikato.ac.nz/bitstreams/b3cbfa41-4aa3-4333-b5b4-141e8160ac06/download
PageCount 10
ParticipantIDs unpaywall_primary_10_1109_dsaa_2017_63
ieee_primary_8259761
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
PublicationTitleAbbrev DSAA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968440
Score 1.6744832
Snippet Accounting for misclassification costs is important in many practical applications of machine learning, and cost-sensitive techniques for classification have...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 30
SubjectTerms Computer science
Electronic mail
Measurement
Optimization
Predictive models
Surface treatment
SummonAdditionalLinks – databaseName: IEL(IEEE/IET Electronic Library )
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zF_UydRPnL3IQT3ZL2yxLjkMdQ5iKbrBbSdovQza74Vpk_vUmbdeJeJBeCmkhfCH58pL33ofQla-kFh0QTsQoONQLfYe7oM1iaN3XlPR05sA3fGSDMX2YdCYVdFNqYQAgI59By75md_nRIkztUVnboBmTPQ3W2elylmu1tucpgnFKScltF-27117Pcre6LevxmdVO2Ue7abyU6085n_9II_0aGm46kLNHZq00Ua3w65c34397eIAaW8Eefi5T0SGqQHyEapuKDbiYwHUkCjvVKR7l9XnwOLHk2DV-MkvHe6HJxG8xfoFpzpCN8UiuZqsGGvfvR7cDpyie4Lx5rp84nieB85CayIc6MqhEu0QqbRBEpCFUVArFgUQh6_hgHs4k7RLToLSrfLPt9o9RNV7EcIKwvf91JQfmRUA14VISK7iNXAJKAJAmqttIBMvcHyMogtBE12Wwy7YMcxARRCspAzs4AfNP__7_DO3ZD3Lm3DmqJh8pXJgdQKIus6H_Bus3slI
  priority: 102
  providerName: IEEE
Title Learning Through Utility Optimization in Regression Tasks
URI https://ieeexplore.ieee.org/document/8259761
https://researchcommons.waikato.ac.nz/bitstreams/b3cbfa41-4aa3-4333-b5b4-141e8160ac06/download
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTgIxEG0UDsaLGjBilOzBeFtot92yezRGQkxEYiDB02a6nSIBFiJLDF78dVtY0XjyYnpsD-1MM52XzntDyBVXYOIQY19Lgb4IUu5HDI0Nhk59TUFgNgp8D13ZGYj7YTgsWpU6LkwhcfNizT1zZi-INMW_jBrnjkIBs2VT8VQZEBYAAXDH--G-CpXwmWAYMUkhpbKpneD8HPQ-KcvQ5uolUh50ezfPuwr4uKmX4OSHWKvhlEA3HVYOycEqW8D6DabTH49N-4h8fG1zW2Myaaxy1Ujffyk4_t85jkn1mwjo9XZP3AnZw6xC4kKTdeT1t01-vEHuKmzX3qONP7OC2OmNM-8JR9sy28zrw3KyrJJB-65_2_GLDgz-OGA894MAMIpSYd2XGm2hjWEUlLEwRBtMlYBYRUh1KkOOdkQSRIvaCWWY4jZ356eklM0zPCOe-0RmEKEMNApDIwDqWLuaUVQxIq2RirN9stiKbCQWudpMidXI9c4Xu7kNcKFx4nyXON8lkp__deEFKeWvK7y0uUSu6hvCX724Fp90ptEc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH6IHtTL_InzZw7iyc60TWtyHOqYuqnoBt5K0r6MoXbiOmT-9SZt14l4kF4KaSG8tHn5ku_7HsCxr6QWAQonCRk6zIt9h7uozWRo3deU9HTuwNe9C9t9dvMcPC_AaaWFQcScfIYNe5uf5SejeGK3ys4MmjHZ02CdpYAxFhRqrfmOigg5Y7Rit4uzy6dm07K3zhvW5TOvnrIKy5P0XU4_5evrj0TSqkF31oWCP_LSmGSqEX_9cmf8bx_XYGsu2SMPVTJahwVMN6A2q9lAyl94E0RpqDogvaJCD-lnlh47Jfdm8ngrVZlkmJJHHBQc2ZT05PhlvAX91lXvou2U5ROcoef6meN5EjmPmYl9rBODS7RLpdIGQyQaY8WkUBxpEoeBj-bioWTn1DQo7SrfLLz9bVhMRynuALEnwK7kGHoJMk25lNRKbhOXohKItA6bNhLRe-GQEZVBqMNJFeyqLUcdVETJWMrIDk4U-rt_v38Ey-1etxN1ru9u92DFPlzw6PZhMfuY4IFZD2TqMP8MvgFtlbWf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTgIxEG0UDsaLGjBq1OzBeFtot92yezRGQkxEYiDB02a6nSIBFuIuMXjx121hRePJi-mxPbQzzXReOu8NIVdcgYlDjH0tBfoiSLkfMTQ2GDr1NQWBWSvwPXRlZyDuh-GwbFXquDClxM2LNffMmb0k0pT_MmpcOAoFzPKm4qkyICwAAuCO98N9FSrhM8EwYpJCSmVTO8H5OehdUpWhzdUrpDro9m6etxXwcVPn4OSHWKvhlEDXHVb2yd4yW8DqDabTH49N-4B8fG1zU2MyaSwL1Ujffyk4_t85Dkn9mwjo9bZP3BHZwaxG4lKTdeT1N01-vEHhKmxX3qONP7OS2OmNM-8JR5sy28zrQz7J62TQvuvfdvyyA4M_Dhgv_CAAjKJUWPelRltoYxgFZSwM0QZTJSBWEVKdypCjHZEE0aJ2QhmmuM3d-TGpZPMMT4jnPpEZRCgDjcLQCIA61q5mFFWMSE9Jzdk-WWxENhKLXG2mxE7J9dYX27k1cKFx4nyXON8lkp_9deE5qRSvS7ywuUShLssL8QmTRNAb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=DSAA+2017+%3A+proceedings+%3A+2017+International+Conference+on+Data+Science+and+Advanced+Analytics+%3A+Tokyo%2C+Japan%2C+19-21+October+2017&rft.atitle=Learning+Through+Utility+Optimization+in+Regression+Tasks&rft.au=Branco%2C+Paula&rft.au=Torgo%2C+Luis&rft.au=Ribeiro%2C+Rita+P.&rft.au=Frank%2C+Eibe&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=30&rft.epage=39&rft_id=info:doi/10.1109%2FDSAA.2017.63&rft.externalDocID=8259761