Investigating execution-characteristics of feature-detection algorithms

We discuss how to obtain information of execution characteristics, such as parallelizability and memory utilization, with the final aim to improve the performance and predictability of feature and corner detection algorithms for use in e.g. robotics and autonomous machines. Our aim is to obtain a be...

Full description

Saved in:
Bibliographic Details
Published in2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Vol. Part F134116; pp. 1 - 4
Main Authors Danielsson, Jakob, Jagemar, Marcus, Behnam, Moris, Sjodin, Mikael
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.01.2017
Subjects
Online AccessGet full text
ISSN1946-0740
1946-0759
1946-0759
DOI10.1109/ETFA.2017.8247758

Cover

Abstract We discuss how to obtain information of execution characteristics, such as parallelizability and memory utilization, with the final aim to improve the performance and predictability of feature and corner detection algorithms for use in e.g. robotics and autonomous machines. Our aim is to obtain a better understanding of how computer vision algorithms use hardware resources and how to improve the time predictability and execution time of such algorithms when executing on multi-core CPUs. We evaluate a fork-join model applicable to feature detection algorithms and present a method for measuring how well the algorithm performance correlates with hardware resource usage. We have applied our method to the Featured from Accelerated Segment Test (FAST) algorithm. Our characterization of FAST reveals that it is an algorithm with excellent parallelism opportunities, resulting in an almost linear speed-up per core. Our measurements also reveal that the performance of FAST correlates very little with the number of misses in the L1 data cache, L1 instruction cache, data translation lookaside buffer and L2 cache. Thus, the FAST algorithm will not have a negative effect on the execution time when the input data fits in the L2 cache.
AbstractList We discuss how to obtain information of execution characteristics, such as parallelizability and memory utilization, with the final aim to improve the performance and predictability of feature and corner detection algorithms for use in e.g. robotics and autonomous machines. Our aim is to obtain a better understanding of how computer vision algorithms use hardware resources and how to improve the time predictability and execution time of such algorithms when executing on multi-core CPUs. We evaluate a fork-join model applicable to feature detection algorithms and present a method for measuring how well the algorithm performance correlates with hardware resource usage. We have applied our method to the Featured from Accelerated Segment Test (FAST) algorithm. Our characterization of FAST reveals that it is an algorithm with excellent parallelism opportunities, resulting in an almost linear speed-up per core. Our measurements also reveal that the performance of FAST correlates very little with the number number of misses in the L1 data cache, L1 instruction cache, data translation lookaside buffer and L2 cache. Thus, the FAST algorithm will not have a negative effect on the execution time when the input data fits in the L2 cache. 
We discuss how to obtain information of execution characteristics, such as parallelizability and memory utilization, with the final aim to improve the performance and predictability of feature and corner detection algorithms for use in e.g. robotics and autonomous machines. Our aim is to obtain a better understanding of how computer vision algorithms use hardware resources and how to improve the time predictability and execution time of such algorithms when executing on multi-core CPUs. We evaluate a fork-join model applicable to feature detection algorithms and present a method for measuring how well the algorithm performance correlates with hardware resource usage. We have applied our method to the Featured from Accelerated Segment Test (FAST) algorithm. Our characterization of FAST reveals that it is an algorithm with excellent parallelism opportunities, resulting in an almost linear speed-up per core. Our measurements also reveal that the performance of FAST correlates very little with the number of misses in the L1 data cache, L1 instruction cache, data translation lookaside buffer and L2 cache. Thus, the FAST algorithm will not have a negative effect on the execution time when the input data fits in the L2 cache.
Author Behnam, Moris
Sjodin, Mikael
Danielsson, Jakob
Jagemar, Marcus
Author_xml – sequence: 1
  givenname: Jakob
  surname: Danielsson
  fullname: Danielsson, Jakob
  email: jakob.danielsson@mdh.se
  organization: Malardalen Univ., Vasteras, Sweden
– sequence: 2
  givenname: Marcus
  surname: Jagemar
  fullname: Jagemar, Marcus
  organization: Ericsson AB, Stockholm, Sweden
– sequence: 3
  givenname: Moris
  surname: Behnam
  fullname: Behnam, Moris
  organization: Malardalen Univ., Vasteras, Sweden
– sequence: 4
  givenname: Mikael
  surname: Sjodin
  fullname: Sjodin, Mikael
  organization: Malardalen Univ., Vasteras, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-38918$$DView record from Swedish Publication Index
BookMark eNo9kMtuwjAURN2KSqWUD6i6yQc09NpJ_FgiChQJqRvabeTYN8EVJMg2ffx9U4FYzUhzNNLMHRm0XYuEPFCYUArqeb5ZTCcMqJhIlgtRyCsyVkLSAhTwAgp1TYZU5TwFUajBxedwS8YhfAJA38JVpoZkuWq_METX6OjaJsEfNMfoujY1W-21iehdn5qQdHVSo45Hj6nFiOYfSvSu6byL2324Jze13gUcn3VE3hfzzew1Xb8tV7PpOnWMspiiEEiV0QwMg8pohH6B5FZnlaVG5wK1lKziUAvIaGXzmlprgYvc1Mihykbk6dQbvvFwrMqDd3vtf8tOu_LFfUzLzjfl3m7LTCoqe_zxhDtEvMDn17I_Icdidg
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTPV
AOWAS
DF7
DOI 10.1109/ETFA.2017.8247758
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
SwePub
SwePub Articles
SWEPUB Mälardalens högskola
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509065059
1509065059
EISSN 1946-0759
EndPage 4
ExternalDocumentID oai_DiVA_org_mdh_38918
8247758
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ADTPV
ADZIZ
AOWAS
CHZPO
DF7
IPLJI
M43
RNS
ID FETCH-LOGICAL-i212t-e77e19ca20c20bcae082486da3bd1ca47ea882b60f7031bd4f1ddd0674cfe60b3
IEDL.DBID RIE
ISSN 1946-0740
1946-0759
IngestDate Sat Oct 11 06:56:03 EDT 2025
Wed Aug 27 02:41:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i212t-e77e19ca20c20bcae082486da3bd1ca47ea882b60f7031bd4f1ddd0674cfe60b3
PageCount 4
ParticipantIDs ieee_primary_8247758
swepub_primary_oai_DiVA_org_mdh_38918
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationTitle 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
PublicationTitleAbbrev ETFA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
ssj0001968306
Score 2.0466952
Snippet We discuss how to obtain information of execution characteristics, such as parallelizability and memory utilization, with the final aim to improve the...
SourceID swepub
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms Detection algorithms
Feature extraction
Hardware
Monitoring
Prediction algorithms
Velocity measurement
Title Investigating execution-characteristics of feature-detection algorithms
URI https://ieeexplore.ieee.org/document/8247758
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-38918
Volume Part F134116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT8IwHMcb4KQXH2DEV3bQmx0bdG13JAoSE40HMNyWPn4DVDaDIzH-9XbdBCQevC1p1jS_Nvl9-3t8itClT4UKuOhg4zsCTALNsAhJjHnIFCEBBBRsgewjHYzI_TgYV9D1qhcGAGzxGbj5p83l61Qt81BZi7cJM_q2iqqM06JXax1PMVo8LAmXLwX2hRs5XCYyzWirN-x381ou5pbzlA-qbEFCrWPp76GHnyUV9SSv7jKTrvraojX-d837qLFu4XOeVs7pAFUgOUS7G_TBOrrbYGwkEwc-QdlTiNVviLOTxk4MFgCKNWS2ditxxNskXcyy6fyjgUb93vBmgMt3FfDMOKoMA2Pgh0q0PdX2pBJgZADhVIuO1L4ShIEwultSL87h9lKT2NdaG7dGVAzUk50jVEvSBI6RE3bAI0CAQcAINVdtY2kiGQ8kk5Jpv4nquUmi9wKdEZXWaKKrwuSrgZxyfTt77kbGeNFcT6M8f8pP_v79FO3k-1hEQs5QLVss4dxog0xe2EPxDQqbuZo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ05T8MwFMefShmAhVvcZIANt0ljx8lYAaUcRQwFdYt8vLTlSFBJJcSnxzloS8XAZsmyZb1Yev-842eAE8cTivnCJcZ3MEKZ5kQENCJ-wBWlDJmHeYHsvdd-pDc91qvA2aQXBhHz4jOsZcM8l68TNc5CZXW_QbnRtwuwyKjZqOjWmkZUjBoPSsblcwF-8Y0gLlOZZrZ-2W01s2ouXit3Kp9UmcOE5q6ltQqdn0MVFSUvtXEqa-prjtf431Ovwda0ic96mLindahgvAErM_zBTbiaoWzEfQs_UeX3kKjfGGcriawIcwQo0Zjm1VuxJV77yWiYDt4-tuCxddk9b5PyZQUyNK4qJcg5OoESDVs1bKkEGiFAfU8LV2pHCcpRGOUtPTvK8PZS08jRWhvHRlWEni3dbajGSYw7YAUu2hQpcmSceuZn21iaSu4zyaXk2tmFzcwk4XsBzwhLa-zCaWHyyUTGub4YPjVDY7zwTQ_CLIPq7_29_BiW2t3OXXh3fX-7D8vZNy3iIgdQTUdjPDRKIZVH-QX5Bu1QvOc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+22nd+IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation+%28ETFA%29&rft.atitle=Investigating+execution-characteristics+of+feature-detection+algorithms&rft.au=Danielsson%2C+Jakob&rft.au=Jagemar%2C+Marcus&rft.au=Behnam%2C+Moris&rft.au=Sjodin%2C+Mikael&rft.date=2017-01-01&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FETFA.2017.8247758&rft.externalDocID=8247758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-0740&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-0740&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-0740&client=summon