Parametric and non-parametric stochastic anomaly detection in analysis of eye-tracking data

Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are presented and evaluated. Both methods are based on the principles of stochastic anomaly detection and make use of orthogonal series appro...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE 52nd Annual Conference on Decision and Control (CDC pp. 2532 - 2537
Main Authors Jansson, Daniel, Medvedev, Alexander
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISBN1467357146
9781467357142
ISSN0191-2216
DOI10.1109/CDC.2013.6760261

Cover

Abstract Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are presented and evaluated. Both methods are based on the principles of stochastic anomaly detection and make use of orthogonal series approximation for probability distribution estimation. The first method relies on the identification of a Wiener-type model of the smooth pursuit system and attempts to find statistically significant differences between the estimated parameters due to Parkinsonism. For accurate estimation of the model parameters, visual stimuli designed to excite the essential nonlinear dynamics of the oculomotor system are used and a method of generating the stimuli is presented. The second method applies the same statistical method to distinguish between the gaze trajectories of healthy and Parkinson subjects attempting to track the visual stimuli. Both methods show promising results, where healthy individuals and patients diagnosed with Parkinson's disease are effectively separated in terms of the considered metric. The results are preliminary because of the small number of participating test subjects, but they are indicative of the potential of the presented methods as diagnosing or staging tools for Parkinson's disease.
AbstractList Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are presented and evaluated. Both methods are based on the principles of stochastic anomaly detection and make use of orthogonal series approximation for probability distribution estimation. The first method relies on the identification of a Wiener-type model of the smooth pursuit system and attempts to find statistically significant differences between the estimated parameters due to Parkinsonism. For accurate estimation of the model parameters, visual stimuli designed to excite the essential nonlinear dynamics of the oculomotor system are used and a method of generating the stimuli is presented. The second method applies the same statistical method to distinguish between the gaze trajectories of healthy and Parkinson subjects attempting to track the visual stimuli. Both methods show promising results, where healthy individuals and patients diagnosed with Parkinson's disease are effectively separated in terms of the considered metric. The results are preliminary because of the small number of participating test subjects, but they are indicative of the potential of the presented methods as diagnosing or staging tools for Parkinson's disease.
Author Medvedev, Alexander
Jansson, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Jansson
  fullname: Jansson, Daniel
  email: daniel.jansson@it.uu.se
  organization: Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden
– sequence: 2
  givenname: Alexander
  surname: Medvedev
  fullname: Medvedev, Alexander
  email: alexander.medvedev@it.uu.se
  organization: Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226160$$DView record from Swedish Publication Index
BookMark eNpFkE1PAjEQhmvEREDuJl72B7jYL9rdI1nwIyHRg3rxsBnaKVZhS7Ylhn_vRlBPk3neJzPJOyC9JjRIyCWjY8ZoeVPNqjGnTIyVVpQrdkJGpS6YVFpMNNPilAx-F6l6pE9ZyXLOmTongxg_KKUFVapP3p6ghQ2m1psMGpt1b_LtP4opmHeI6ScNG1jvM4sJTfKhyXzTwQ5FH7PgMtxjnlown75ZZRYSXJAzB-uIo-Mckpfb-XN1ny8e7x6q6SL3nPGUawelRuQCS1cwJwpn7ERZOZGoBDqlKUfJS2ulpaWVBpjV4JYFCKO4MFYMyfXhbvzC7W5Zb1u_gXZfB_D1zL9O69Cu6t2u5l1Pinb61UH3iPgnH3sU30lwaBo
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTPV
BNKNJ
DF2
DOI 10.1109/CDC.2013.6760261
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
SwePub
SwePub Conference
SWEPUB Uppsala universitet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781467357173
1479913812
1467357170
9781479913817
EndPage 2537
ExternalDocumentID oai_DiVA_org_uu_226160
6760261
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IH
6IK
6IM
AAJGR
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
RIE
RIO
RNS
6IG
6IL
6IN
AAWTH
ADFMO
ADTPV
BEFXN
BFFAM
BGNUA
BKEBE
BNKNJ
BPEOZ
DF2
IEGSK
IERZE
IJVOP
OCL
RIL
ID FETCH-LOGICAL-i212t-7fa97ee23e9f81f38fcd56d454e63ef6702e429dd4d09d4ca1d7afb8a3c623cd3
IEDL.DBID RIE
ISBN 1467357146
9781467357142
ISSN 0191-2216
IngestDate Thu Aug 21 06:25:17 EDT 2025
Wed Aug 27 04:20:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i212t-7fa97ee23e9f81f38fcd56d454e63ef6702e429dd4d09d4ca1d7afb8a3c623cd3
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_uu_226160
ieee_primary_6760261
PublicationCentury 2000
PublicationDate 2013-Dec.
2013
PublicationDateYYYYMMDD 2013-12-01
2013-01-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-Dec.
PublicationDecade 2010
PublicationTitle 2013 IEEE 52nd Annual Conference on Decision and Control (CDC
PublicationTitleAbbrev CDC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008066
ssj0001215761
Score 1.5252764
Snippet Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are...
SourceID swepub
ieee
SourceType Open Access Repository
Publisher
StartPage 2532
SubjectTerms Silicon
Visualization
Title Parametric and non-parametric stochastic anomaly detection in analysis of eye-tracking data
URI https://ieeexplore.ieee.org/document/6760261
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSS--Vlxf5KA3s7ZNmsdRVhcRFA8qCx5KmkxxUbsi7UF_vZO2uyviwVPbhNI0CcyXmW--IeRY2VikubYMzY1nQieGmRB_T6PEGSNAQFO15OZWXj2I63E6XiKn81wYAGjIZzAIt00s309dHVxlZ1KFgkl41llWWra5Wj_8KTFC5wW9Q0dtnBLPIyxJYtkkdUnFU4WXmdZT95zM4peRORteDAPhiw-6j3VVV34piTbWZ7RObmbjbkknL4O6ygfu65ek439_bIP0Fnl-9G5uwTbJEpRbZO2HROE2ebqzgb4VdPypLT0tpyV7XzQhdHTPNmg9Y-_0zb5-Ug9VQ-8q6aTExlbzhE4LCp_Aqg_rgnOeBmZqjzyMLu-HV6wryMAmaOEqpgprFEDCwRQ6LrgunE-lF6kAyaGQKkoA7Zv3wkfGC2djr2yBO4E7RFnO8x2ygsOEXUJFLkNM11ueeBE5qTUgUjUAuvB5CrJPtsM0Ze-t5kbWzVCfnLTLMO8I8tgXk8fzDCc0q-sM4WQso72_X98nq2FtWzrKAVmpPmo4RFBR5UfNbvoGot3Ftw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDCW5SnB9hwycN24hEVUIG2YgCExBA59kVUQIJQMsCv55ykLUIMTElsRXFsS_f57rvvCDmKtM9FGmuG5sYyHgeKKRd_F15glOLAoa5aMhzJ_j2_fhSPc-RkmgsDADX5DLruto7l28JUzlV2KiNXMAnPOguCcy6abK0fHhUfwfOM4BF7TaQSTyQsCHxZp3XJKBQRXiZqT-1zMIlgeuq0d95zlK-w236urbvyS0u0tj-XK2Q4GXlDO3npVmXaNV-_RB3_-2urZHOW6UdvpzZsjcxBvk6Wf4gUbpCnW-0IXE7Jn-rc0rzI2fusCcGjedZO7Rl7izf9-kktlDXBK6fjHBsb1RNaZBQ-gZUf2jj3PHXc1E1yf3lx1-uztiQDG6ONK1mUaRUBBCGoLPazMM6MFdJywUGGkMnICwAtnLXcespyo30b6Qz3QmgQZxkbbpF5HCZsE8pT6aK6VoeB5Z6RcQyIVRVAnNlUgOyQDTdNyXujupG0M9Qhx80yTDucQPb5-OEswQlNqipBQOlLb-fv1w_JYv9uOEgGV6ObXbLk1rkhp-yR-fKjgn2EGGV6UO-sbyw7yQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+52nd+Annual+Conference+on+Decision+and+Control+%28CDC&rft.atitle=Parametric+and+non-parametric+stochastic+anomaly+detection+in+analysis+of+eye-tracking+data&rft.au=Jansson%2C+Daniel&rft.au=Medvedev%2C+Alexander&rft.date=2013-01-01&rft.isbn=9781467357142&rft.spage=2532&rft_id=info:doi/10.1109%2FCDC.2013.6760261&rft.externalDocID=oai_DiVA_org_uu_226160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon