Parametric and non-parametric stochastic anomaly detection in analysis of eye-tracking data
Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are presented and evaluated. Both methods are based on the principles of stochastic anomaly detection and make use of orthogonal series appro...
Saved in:
| Published in | 2013 IEEE 52nd Annual Conference on Decision and Control (CDC pp. 2532 - 2537 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1467357146 9781467357142 |
| ISSN | 0191-2216 |
| DOI | 10.1109/CDC.2013.6760261 |
Cover
| Abstract | Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are presented and evaluated. Both methods are based on the principles of stochastic anomaly detection and make use of orthogonal series approximation for probability distribution estimation. The first method relies on the identification of a Wiener-type model of the smooth pursuit system and attempts to find statistically significant differences between the estimated parameters due to Parkinsonism. For accurate estimation of the model parameters, visual stimuli designed to excite the essential nonlinear dynamics of the oculomotor system are used and a method of generating the stimuli is presented. The second method applies the same statistical method to distinguish between the gaze trajectories of healthy and Parkinson subjects attempting to track the visual stimuli. Both methods show promising results, where healthy individuals and patients diagnosed with Parkinson's disease are effectively separated in terms of the considered metric. The results are preliminary because of the small number of participating test subjects, but they are indicative of the potential of the presented methods as diagnosing or staging tools for Parkinson's disease. |
|---|---|
| AbstractList | Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are presented and evaluated. Both methods are based on the principles of stochastic anomaly detection and make use of orthogonal series approximation for probability distribution estimation. The first method relies on the identification of a Wiener-type model of the smooth pursuit system and attempts to find statistically significant differences between the estimated parameters due to Parkinsonism. For accurate estimation of the model parameters, visual stimuli designed to excite the essential nonlinear dynamics of the oculomotor system are used and a method of generating the stimuli is presented. The second method applies the same statistical method to distinguish between the gaze trajectories of healthy and Parkinson subjects attempting to track the visual stimuli. Both methods show promising results, where healthy individuals and patients diagnosed with Parkinson's disease are effectively separated in terms of the considered metric. The results are preliminary because of the small number of participating test subjects, but they are indicative of the potential of the presented methods as diagnosing or staging tools for Parkinson's disease. |
| Author | Medvedev, Alexander Jansson, Daniel |
| Author_xml | – sequence: 1 givenname: Daniel surname: Jansson fullname: Jansson, Daniel email: daniel.jansson@it.uu.se organization: Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden – sequence: 2 givenname: Alexander surname: Medvedev fullname: Medvedev, Alexander email: alexander.medvedev@it.uu.se organization: Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226160$$DView record from Swedish Publication Index |
| BookMark | eNpFkE1PAjEQhmvEREDuJl72B7jYL9rdI1nwIyHRg3rxsBnaKVZhS7Ylhn_vRlBPk3neJzPJOyC9JjRIyCWjY8ZoeVPNqjGnTIyVVpQrdkJGpS6YVFpMNNPilAx-F6l6pE9ZyXLOmTongxg_KKUFVapP3p6ghQ2m1psMGpt1b_LtP4opmHeI6ScNG1jvM4sJTfKhyXzTwQ5FH7PgMtxjnlown75ZZRYSXJAzB-uIo-Mckpfb-XN1ny8e7x6q6SL3nPGUawelRuQCS1cwJwpn7ERZOZGoBDqlKUfJS2ulpaWVBpjV4JYFCKO4MFYMyfXhbvzC7W5Zb1u_gXZfB_D1zL9O69Cu6t2u5l1Pinb61UH3iPgnH3sU30lwaBo |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO ADTPV BNKNJ DF2 |
| DOI | 10.1109/CDC.2013.6760261 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present SwePub SwePub Conference SWEPUB Uppsala universitet |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781467357173 1479913812 1467357170 9781479913817 |
| EndPage | 2537 |
| ExternalDocumentID | oai_DiVA_org_uu_226160 6760261 |
| Genre | orig-research |
| GroupedDBID | 29P 6IE 6IF 6IH 6IK 6IM AAJGR AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI RIE RIO RNS 6IG 6IL 6IN AAWTH ADFMO ADTPV BEFXN BFFAM BGNUA BKEBE BNKNJ BPEOZ DF2 IEGSK IERZE IJVOP OCL RIL |
| ID | FETCH-LOGICAL-i212t-7fa97ee23e9f81f38fcd56d454e63ef6702e429dd4d09d4ca1d7afb8a3c623cd3 |
| IEDL.DBID | RIE |
| ISBN | 1467357146 9781467357142 |
| ISSN | 0191-2216 |
| IngestDate | Thu Aug 21 06:25:17 EDT 2025 Wed Aug 27 04:20:20 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i212t-7fa97ee23e9f81f38fcd56d454e63ef6702e429dd4d09d4ca1d7afb8a3c623cd3 |
| PageCount | 6 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_226160 ieee_primary_6760261 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Dec. 2013 |
| PublicationDateYYYYMMDD | 2013-12-01 2013-01-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE 52nd Annual Conference on Decision and Control (CDC |
| PublicationTitleAbbrev | CDC |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008066 ssj0001215761 |
| Score | 1.5252764 |
| Snippet | Two methods for distinguishing between healthy subjects and patients diagnosed with Parkinson's disease by means of recorded smooth pursuit eye movements are... |
| SourceID | swepub ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 2532 |
| SubjectTerms | Silicon Visualization |
| Title | Parametric and non-parametric stochastic anomaly detection in analysis of eye-tracking data |
| URI | https://ieeexplore.ieee.org/document/6760261 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226160 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSS--Vlxf5KA3s7ZNmsdRVhcRFA8qCx5KmkxxUbsi7UF_vZO2uyviwVPbhNI0CcyXmW--IeRY2VikubYMzY1nQieGmRB_T6PEGSNAQFO15OZWXj2I63E6XiKn81wYAGjIZzAIt00s309dHVxlZ1KFgkl41llWWra5Wj_8KTFC5wW9Q0dtnBLPIyxJYtkkdUnFU4WXmdZT95zM4peRORteDAPhiw-6j3VVV34piTbWZ7RObmbjbkknL4O6ygfu65ek439_bIP0Fnl-9G5uwTbJEpRbZO2HROE2ebqzgb4VdPypLT0tpyV7XzQhdHTPNmg9Y-_0zb5-Ug9VQ-8q6aTExlbzhE4LCp_Aqg_rgnOeBmZqjzyMLu-HV6wryMAmaOEqpgprFEDCwRQ6LrgunE-lF6kAyaGQKkoA7Zv3wkfGC2djr2yBO4E7RFnO8x2ygsOEXUJFLkNM11ueeBE5qTUgUjUAuvB5CrJPtsM0Ze-t5kbWzVCfnLTLMO8I8tgXk8fzDCc0q-sM4WQso72_X98nq2FtWzrKAVmpPmo4RFBR5UfNbvoGot3Ftw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDCW5SnB9hwycN24hEVUIG2YgCExBA59kVUQIJQMsCv55ykLUIMTElsRXFsS_f57rvvCDmKtM9FGmuG5sYyHgeKKRd_F15glOLAoa5aMhzJ_j2_fhSPc-RkmgsDADX5DLruto7l28JUzlV2KiNXMAnPOguCcy6abK0fHhUfwfOM4BF7TaQSTyQsCHxZp3XJKBQRXiZqT-1zMIlgeuq0d95zlK-w236urbvyS0u0tj-XK2Q4GXlDO3npVmXaNV-_RB3_-2urZHOW6UdvpzZsjcxBvk6Wf4gUbpCnW-0IXE7Jn-rc0rzI2fusCcGjedZO7Rl7izf9-kktlDXBK6fjHBsb1RNaZBQ-gZUf2jj3PHXc1E1yf3lx1-uztiQDG6ONK1mUaRUBBCGoLPazMM6MFdJywUGGkMnICwAtnLXcespyo30b6Qz3QmgQZxkbbpF5HCZsE8pT6aK6VoeB5Z6RcQyIVRVAnNlUgOyQDTdNyXujupG0M9Qhx80yTDucQPb5-OEswQlNqipBQOlLb-fv1w_JYv9uOEgGV6ObXbLk1rkhp-yR-fKjgn2EGGV6UO-sbyw7yQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+52nd+Annual+Conference+on+Decision+and+Control+%28CDC&rft.atitle=Parametric+and+non-parametric+stochastic+anomaly+detection+in+analysis+of+eye-tracking+data&rft.au=Jansson%2C+Daniel&rft.au=Medvedev%2C+Alexander&rft.date=2013-01-01&rft.isbn=9781467357142&rft.spage=2532&rft_id=info:doi/10.1109%2FCDC.2013.6760261&rft.externalDocID=oai_DiVA_org_uu_226160 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2216&client=summon |