Aerial navigation in obstructed environments with embedded nonlinear model predictive control

We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAVs) using non-linear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potenti...

Full description

Saved in:
Bibliographic Details
Published in2019 18th European Control Conference (ECC) pp. 3556 - 3563
Main Authors Small, Elias, Sopasakis, Pantelis, Fresk, Emil, Patrinos, Panagiotis, Nikolakopoulos, George
Format Conference Proceeding
LanguageEnglish
Published EUCA 01.06.2019
Subjects
Online AccessGet full text
DOI10.23919/ECC.2019.8796236

Cover

Abstract We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAVs) using non-linear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A c89 implementation of PANOC solves the NMPC problem at a rate of 20 Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.
AbstractList We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAVs) using non-linear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A c89 implementation of PANOC solves the NMPC problem at a rate of 20 Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant.
Author Fresk, Emil
Patrinos, Panagiotis
Nikolakopoulos, George
Sopasakis, Pantelis
Small, Elias
Author_xml – sequence: 1
  givenname: Elias
  surname: Small
  fullname: Small, Elias
  email: elias.small@ltu.se
  organization: Robotics Team, Luleå Technical University, Luleå, SE-97187, Sweden
– sequence: 2
  givenname: Pantelis
  surname: Sopasakis
  fullname: Sopasakis, Pantelis
  email: p.sopasakis@qub.ac.uk
  organization: Queen's University Belfast, School of Electronics, Electrical Engineering and Computer Science, Centre For Intelligent Autonomous Manufacturing Systems (i-AMS)
– sequence: 3
  givenname: Emil
  surname: Fresk
  fullname: Fresk, Emil
  email: emil.fresk@ltu.se
  organization: Robotics Team, Luleå Technical University, Luleå, SE-97187, Sweden
– sequence: 4
  givenname: Panagiotis
  surname: Patrinos
  fullname: Patrinos, Panagiotis
  email: geonik@ltu.se
  organization: KU Leuven, Kasteelpark Arenberg 10, Leuven, 3001, Belgium
– sequence: 5
  givenname: George
  surname: Nikolakopoulos
  fullname: Nikolakopoulos, George
  email: panos.patrinos@esat.kuleuven.be
  organization: Robotics Team, Luleå Technical University, Luleå, SE-97187, Sweden
BookMark eNotj8tKAzEYRiPoQmsfQNzkBWbMrUn-ZRnqBQpudCklk_yjgZmkZOKIb2_Brr7FgXP4bshlygkJueOsFRI4POy6rhWMQ2sNaCH1BVmDsRKY4UoxZq_JxxZLdCNNbomfrsacaEw093Mt375ioJiWWHKaMNWZ_sT6RXHqMYQTOtXGmNAVOuWAIz0WDNHXuCD1OdWSx1tyNbhxxvV5V-T9cffWPTf716eXbrtvouCiNlwLw6TzDG1vbND9RgMDpZwzEAYfNr63wBSTVisnBQK6wXgQIYCziFquyP2_NyLi4Vji5Mrv4Xxa_gHOdVLM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ECC.2019.8796236
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9783907144008
3907144007
EndPage 3563
ExternalDocumentID 8796236
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i212t-162703ac0e8b78d6b5690944aa79dfcd5cb890403864a32e9eaf7c92dd9a8ee63
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i212t-162703ac0e8b78d6b5690944aa79dfcd5cb890403864a32e9eaf7c92dd9a8ee63
PageCount 8
ParticipantIDs ieee_primary_8796236
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle 2019 18th European Control Conference (ECC)
PublicationTitleAbbrev ECC
PublicationYear 2019
Publisher EUCA
Publisher_xml – name: EUCA
Score 2.0286005
Snippet We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAVs) using non-linear model predictive control...
SourceID ieee
SourceType Publisher
StartPage 3556
SubjectTerms Collision avoidance
Europe
Geometry
Linear systems
Navigation
Optimization methods
Prediction algorithms
Predictive control
Stochastic processes
Trajectory
Title Aerial navigation in obstructed environments with embedded nonlinear model predictive control
URI https://ieeexplore.ieee.org/document/8796236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7dPnbzPEppKULFg4VepOQxC0XcltJ68Nc7Sdb6wIOXZVnCZpnZ5Esy33xDyE0uOfdCQSZyLTKG10z3S9zzOO8l4wgYJiQnTx_EZMbu53zeILf7XBgAiOQz6IbbGMv3K7cLR2U9JTWitWiSppQ65WqlQGVe6IHujYbDwNVC56d2PwqmRLwYH5LpZ0-JJvLS3W1t173_EmH876cckc5XZh593GPOMWlA1SbPd_E3opV5i4IZq4ouK7qySRsWPP2ezUbDySuFVws45XhaJakMs6GxJg5db0LkJsyBtGaxd8hsPHoaTrK6bEK2RBzaZgOR4zA2rg_KSuWF5bgD1owZI7UvnefOKo1jt1CCmSIHDaaUTufea6MARHFCWtg5nBKqXYGv5KbkTjNghQFcMYEAIcExXEmckXYwzWKdlDEWtVXO_358QQ6CexLR6pK00AhwhZC-tdfRlx_C0KUL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBoxve_Do8tjtY3s0BIIKxAMkXAzptkNCjAsh4MFf73SL-IgHL5tm02ybmW2_TmfmG4CbWAnhZIqRjLWMOD0j3ZiSzWOdU1wQYBifnNwfyO6IP4zFuAS321wYRCyCz7Dmm4Uv383t2l-V1VOlCa3lDuwKsipUyNYKrso40U1db7daPlqL1B96_iiZUiBG5wD6n2OFQJGX2nqV1ez7LxrG_07mEKpfuXnsaYs6R1DCvALPd8WPxHLzVlBmzHM2y9k8C-yw6Nj3fDbm714ZvmZIm45jeSDLMEtWVMVhi6X33fhdkG3i2Ksw6rSHrW60KZwQzQiJVlFTxrSQjW1gmqnUyUyQDaw5N0ZpN7VO2CzVtHqTVHKTxKjRTJXVsXPapIgyOYYyDY4nwLRN6JPCTIXVHHlikM5MKFEqtJzOEqdQ8aKZLAI3xmQjlbO_X1_DXnfY701694PHc9j3qgphVxdQJoHgJQH8Krsq9PoBmV2oXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+European+Control+Conference+%28ECC%29&rft.atitle=Aerial+navigation+in+obstructed+environments+with+embedded+nonlinear+model+predictive+control&rft.au=Small%2C+Elias&rft.au=Sopasakis%2C+Pantelis&rft.au=Fresk%2C+Emil&rft.au=Patrinos%2C+Panagiotis&rft.date=2019-06-01&rft.pub=EUCA&rft.spage=3556&rft.epage=3563&rft_id=info:doi/10.23919%2FECC.2019.8796236&rft.externalDocID=8796236