SUN RGB-D: A RGB-D scene understanding benchmark suite
Although RGB-D sensors have enabled major break-throughs for several vision tasks, such as 3D reconstruction, we have not attained the same level of success in high-level scene understanding. Perhaps one of the main reasons is the lack of a large-scale benchmark with 3D annotations and 3D evaluation...
Saved in:
Published in | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 567 - 576 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2015.7298655 |
Cover
Abstract | Although RGB-D sensors have enabled major break-throughs for several vision tasks, such as 3D reconstruction, we have not attained the same level of success in high-level scene understanding. Perhaps one of the main reasons is the lack of a large-scale benchmark with 3D annotations and 3D evaluation metrics. In this paper, we introduce an RGB-D benchmark suite for the goal of advancing the state-of-the-arts in all major scene understanding tasks. Our dataset is captured by four different sensors and contains 10,335 RGB-D images, at a similar scale as PASCAL VOC. The whole dataset is densely annotated and includes 146,617 2D polygons and 64,595 3D bounding boxes with accurate object orientations, as well as a 3D room layout and scene category for each image. This dataset enables us to train data-hungry algorithms for scene-understanding tasks, evaluate them using meaningful 3D metrics, avoid overfitting to a small testing set, and study cross-sensor bias. |
---|---|
AbstractList | Although RGB-D sensors have enabled major break-throughs for several vision tasks, such as 3D reconstruction, we have not attained the same level of success in high-level scene understanding. Perhaps one of the main reasons is the lack of a large-scale benchmark with 3D annotations and 3D evaluation metrics. In this paper, we introduce an RGB-D benchmark suite for the goal of advancing the state-of-the-arts in all major scene understanding tasks. Our dataset is captured by four different sensors and contains 10,335 RGB-D images, at a similar scale as PASCAL VOC. The whole dataset is densely annotated and includes 146,617 2D polygons and 64,595 3D bounding boxes with accurate object orientations, as well as a 3D room layout and scene category for each image. This dataset enables us to train data-hungry algorithms for scene-understanding tasks, evaluate them using meaningful 3D metrics, avoid overfitting to a small testing set, and study cross-sensor bias. |
Author | Jianxiong Xiao Shuran Song Lichtenberg, Samuel P. |
Author_xml | – sequence: 1 surname: Shuran Song fullname: Shuran Song organization: Princeton Univ., Princeton, NJ, USA – sequence: 2 givenname: Samuel P. surname: Lichtenberg fullname: Lichtenberg, Samuel P. organization: Princeton Univ., Princeton, NJ, USA – sequence: 3 surname: Jianxiong Xiao fullname: Jianxiong Xiao organization: Princeton Univ., Princeton, NJ, USA |
BookMark | eNpNkDFPwzAUhA0qEm3pD0AsGVlSnu3YzmMrBQpSBahQ1shJXsCidds4Gfj3REoHprvhdPruRmzgd54Yu-Qw5RzwZv75tpoK4GpqBKZaqRM24ok2UqNO4JQNOWgZa-Q4-OfP2SQEl4MESBEFDJl-X79Eq8VdfH8bzXoThYI8Ra0vqQ6N9aXzX1FOvvje2vonCq1r6IKdVXYTaHLUMVs_PnzMn-Ll6-J5PlvGTkDaxBVKEjJXiUIhko7AJloVmJal7lBtwpXKDRIoqHhh0VhRWtBpWkrLdYEox-y6793Xu0NLocm2rsPbbKynXRsybkw3xhglu-hVH3VElO1r19H-Zsd35B8YPFR2 |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2015.7298655 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1467369640 9781467369640 |
EISSN | 1063-6919 |
EndPage | 576 |
ExternalDocumentID | 7298655 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-f93e23b5459224691a465c98dd6673a4155b79e050f1ca97a2da0688d3a16c993 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Sep 05 06:57:17 EDT 2025 Wed Aug 27 02:49:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-f93e23b5459224691a465c98dd6673a4155b79e050f1ca97a2da0688d3a16c993 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1770307753 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7298655 proquest_miscellaneous_1770307753 |
PublicationCentury | 2000 |
PublicationDate | 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030089920 ssj0023720 ssj0003211698 |
Score | 2.5653436 |
Snippet | Although RGB-D sensors have enabled major break-throughs for several vision tasks, such as 3D reconstruction, we have not attained the same level of success in... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 567 |
SubjectTerms | Benchmark testing Benchmarking Cameras Computer vision Estimation Iterative closest point algorithm Layout Pattern recognition Scene analysis Sensors Tasks Three dimensional Three-dimensional displays |
Title | SUN RGB-D: A RGB-D scene understanding benchmark suite |
URI | https://ieeexplore.ieee.org/document/7298655 https://www.proquest.com/docview/1770307753 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLaJ8yUiMOM2H48RsUCgVElVVKOpWObYjUEWK2mTh1-NLnIKAgS2yEsW5XOx3eXf3EDqnUUpDpWOiuZSExq4kMVMBYTww4XMiNU_LLN8RG07p_SycNdDFphZGa10mn2kHDksuXy1lAb_KegYIQh3lFtoyblbVatW-E7jAX1noA6twYCIbxjeMgg9qLCXzyWAiHrcMp-fyXv95PIEkr9CxN7BKK7-W53LPGbTQQz3bKtVk4RR54siPH40c__s4O6jzVd2Hx5t9axc1dLaHWhaOYvuxr81QrfhQj7URe5yO8OTumtxc4qvqAEM7KI2L70UyODGnv7yJ1QKvC4NpO2g6uH3qD4lVXiCvvhvnJOWB9oPEoCsODee4JygLJY-VApVQASAkibh2Qzf1pOCR8JUA9RoVCI9JA3n2UTNbZvoAYWNXppQr_NRPKEsNoJepkFKaqFzENKZd1AbLzN-r5hpza5QuOqttPzcODyyGyPSyWM-9qOxhZsKsw78vPULb8DKrfK5j1MxXhT4xyCFPTkuX-QSMcrsM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYz4WROPDvbRdas3RREVCEEw3pau7aIhDgPbxb_edh9o1IO3ptmy7q1rf6-_994P4Ax7EXaF9A1JOTewb3LDJ8IxCHWU-xxySaMsyndIelN8_-w-V-B8lQsjpcyCz2RLNzMuX8x5qo_K2goI6jzKNVh3lVfh59la5exxTM1gFeBHr8OO8m0IXXEKttZjybhPoodi0YLjtEza7jyNxjrMy20Vjyi0Vn4t0Nmu063BoBxvHmwya6VJ2OIfP0o5_veFtqDxld-HRqudaxsqMt6BWgFIUfG7L1VXqflQ9tWBPE6HaHx7ZVxfoMu8gXRBKInS72kyKFSXv7yxxQwtU4VqGzDt3kw6PaPQXjBebdNPjIg60nZCha-oLjlHLYaJy6kvhNYJZRqGhB6VpmtGFmfUY7ZgWr9GOMwiXIGeXajG81juAVJ2JUKYzI7sEJNIQXoeMc658suZj33chLq2TPCel9cICqM04bS0faCmvOYxWCzn6TKwvKyKmXK09v--9QQ2epNBP-jfDR8OYFN_2Dy66xCqySKVRwpHJOFxNn0-AZrmvl8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=SUN+RGB-D%3A+A+RGB-D+scene+understanding+benchmark+suite&rft.au=Shuran+Song&rft.au=Lichtenberg%2C+Samuel+P.&rft.au=Jianxiong+Xiao&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=567&rft.epage=576&rft_id=info:doi/10.1109%2FCVPR.2015.7298655&rft.externalDocID=7298655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |