Using Application Data for SLA-Aware Auto-scaling in Cloud Environments

With the establishment of cloud computing as the environment of choice for most modern applications, auto-scaling is an economic matter of great importance. For applications like stream computing that process ever changing amounts of data, modifying the number and configuration of resources to meet...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems pp. 252 - 255
Main Authors Souza, Andre Abrantes D. P., Netto, Marco A. S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2015
Subjects
Online AccessGet full text
ISSN1526-7539
DOI10.1109/MASCOTS.2015.15

Cover

Abstract With the establishment of cloud computing as the environment of choice for most modern applications, auto-scaling is an economic matter of great importance. For applications like stream computing that process ever changing amounts of data, modifying the number and configuration of resources to meet performance requirements becomes essential. Current solutions on auto-scaling are mostly rule-based using infrastructure level metrics such as CPU/memory/network utilization, and system level metrics such as throughput and response time. In this paper, we introduce a study on how effective auto-scaling can be using data generated by the application itself. To make this assessment, two algorithms are proposed that use a priori knowledge of the data stream and use sentiment analysis from soccer-related tweets, triggering auto-scaling operations according to rapid changes in the public sentiment about the soccer players that happens just before big bursts of messages. Our application-based auto-scaling was able to reduce the number of SLA violations by up to 95% and reduce resource requirements by up to 33%.
AbstractList With the establishment of cloud computing as the environment of choice for most modern applications, auto-scaling is an economic matter of great importance. For applications like stream computing that process ever changing amounts of data, modifying the number and configuration of resources to meet performance requirements becomes essential. Current solutions on auto-scaling are mostly rule-based using infrastructure level metrics such as CPU/memory/network utilization, and system level metrics such as throughput and response time. In this paper, we introduce a study on how effective auto-scaling can be using data generated by the application itself. To make this assessment, two algorithms are proposed that use a priori knowledge of the data stream and use sentiment analysis from soccer-related tweets, triggering auto-scaling operations according to rapid changes in the public sentiment about the soccer players that happens just before big bursts of messages. Our application-based auto-scaling was able to reduce the number of SLA violations by up to 95% and reduce resource requirements by up to 33%.
Author Souza, Andre Abrantes D. P.
Netto, Marco A. S.
Author_xml – sequence: 1
  givenname: Andre Abrantes D. P.
  surname: Souza
  fullname: Souza, Andre Abrantes D. P.
– sequence: 2
  givenname: Marco A. S.
  surname: Netto
  fullname: Netto, Marco A. S.
BookMark eNotjE9LwzAcQCNMcJ2ePXjJF8jMn6ZpjqHOKVR26HYevyapRLq0NJ3it9ehpwePx8vQIg7RI3TP6Joxqh_fTFPt9s2aUybXTF6hjOWFEkr9igVaMskLoqTQNyhL6YPSSyeWaHtIIb5jM459sDCHIeInmAF3w4Sb2hDzBZPH5jwPJFnoL22IuOqHs8Ob-BmmIZ58nNMtuu6gT_7unyt0eN7sqxdS77avlalJ4LScSSedKnJp204DaF20jjGwHmjrrCuhtZQX1imZl5wqmnvKHSilRd55xkspxQo9_H2D9_44TuEE0_dRCUGZVuIH6K9Mqw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MASCOTS.2015.15
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1467377201
9781467377201
EndPage 255
ExternalDocumentID 7330197
Genre orig-research
GroupedDBID 29O
6IE
6IK
6IL
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i208t-f5d7645cbf9aa996bd11acea0bdcd8abc026cd754820704e02da77934fe128553
IEDL.DBID RIE
ISSN 1526-7539
IngestDate Wed Aug 27 02:54:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-f5d7645cbf9aa996bd11acea0bdcd8abc026cd754820704e02da77934fe128553
PageCount 4
ParticipantIDs ieee_primary_7330197
PublicationCentury 2000
PublicationDate 20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 20151001
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings - International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
PublicationTitleAbbrev MASCOT
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020153
ssib048751279
Score 2.041841
Snippet With the establishment of cloud computing as the environment of choice for most modern applications, auto-scaling is an economic matter of great importance....
SourceID ieee
SourceType Publisher
StartPage 252
SubjectTerms Algorithm design and analysis
Analytical models
Auto-scaling
cloud computing
Computational modeling
Delays
elasticity
Prediction algorithms
Sentiment analysis
Title Using Application Data for SLA-Aware Auto-scaling in Cloud Environments
URI https://ieeexplore.ieee.org/document/7330197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh002yym2SPobYWsSLUQm9l9hEoSio1QfDXu5ukD8SDtxByWHZ2MvPtfN8MQreZH5rIZ4xQmbjbKgACMqQkBqOFZlIG4LTDk-doPGOPcz5vobutFsYYU5HPjOceq1q-XqnSXZX1Ywu-qYgP0EGcRLVWa3N2XN5NA1dxasCWDXMVuZ4HEbEpuWja-lBf9Cfp1OLlqeN1cc_Nw92bq1KFlVEHTTYLqtkkb15ZSE99_-rV-N8VH6HeTsCHX7ah6Ri1TH6COpsJDrhx6C56qBgDON1VsfE9FIBtJounTylJv2BtcFoWK_Jpjem-XeZ48L4qNR7uSeR6aDYavg7GpBmtQJaBnxQk4zqOGFcyEwAW8khNKSgDvtRKJyCVhWZKxxbOBPafwIwfaIitK7PM2IDGeXiK2vkqN2cI80Q4z9egIGShtS4TgT0W1q-ZEpGm56jr9mXxUXfPWDRbcvH360t06MxS0-WuULtYl-bahv1C3lT2_gEcfKpz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEaR52Eo9RaSnQVEhtpW6VX5EqUIJKIiR-PXaSPoQY2KIog-Xz5e7zfd8dAHeJ7Snfxhg5PDS3VYwhxj0HBUxJKjHnLjPa4XjsD2f4eU7mDXC_0cIopUrymbLMY1nLl5kozFVZN9Dg26HBHtgnGGNSqbXWp8dk3o5rak413NKBrqTXE9dHOimndWMfx6bdOJpoxDwxzC5imYm4O5NVysAyaIF4vaSKT_JmFTm3xPevbo3_XfMR6GwlfPB1E5yOQUOlJ6C1nuEAa5dug8eSMwCjbR0bPrCcQZ3LwskoQtEXWykYFXmGPrU5zbfLFPbes0LC_o5IrgNmg_60N0T1cAW0dO0wRwmRgY-J4AllTIMeLh2HCcVsLoUMGRcanAkZaEDj6r8CVrYrWaCdGSdKhzRCvFPQTLNUnQFIQmp8XzLBPOxp-2Lq6oOhPRsL6kvnHLTNviw-qv4Zi3pLLv5-fQsOhtN4tBg9jV8uwaExUUWeuwLNfFWoa50E5PymtP0PPQCtwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+Modeling%2C+Analysis%2C+and+Simulation+of+Computer+and+Telecommunication+Systems&rft.atitle=Using+Application+Data+for+SLA-Aware+Auto-scaling+in+Cloud+Environments&rft.au=Souza%2C+Andre+Abrantes+D.+P.&rft.au=Netto%2C+Marco+A.+S.&rft.date=2015-10-01&rft.pub=IEEE&rft.issn=1526-7539&rft.spage=252&rft.epage=255&rft_id=info:doi/10.1109%2FMASCOTS.2015.15&rft.externalDocID=7330197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-7539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-7539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-7539&client=summon