Ensemble-CIO: Full-body dynamic motion planning that transfers to physical humanoids

While a lot of progress has recently been made in dynamic motion planning for humanoid robots, much of this work has remained limited to simulation. Here we show that executing the resulting trajectories on a Darwin-OP robot, even with local feedback derived from the optimizer, does not result in st...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 5307 - 5314
Main Authors Mordatch, Igor, Lowrey, Kendall, Todorov, Emanuel
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2015
Subjects
Online AccessGet full text
DOI10.1109/IROS.2015.7354126

Cover

Abstract While a lot of progress has recently been made in dynamic motion planning for humanoid robots, much of this work has remained limited to simulation. Here we show that executing the resulting trajectories on a Darwin-OP robot, even with local feedback derived from the optimizer, does not result in stable movements. We then develop a new trajectory optimization method, adapting our earlier CIO algorithm to plan through ensembles of perturbed models. This makes the plan robust to model uncertainty, and leads to successful execution on the robot. We obtain a high rate of task completion without trajectory divergence (falling) in dynamic forward walking, sideways walking, and turning, and a similarly high success rate in getting up from the floor (the robot broke before we could quantify the latter). Even though the planning is still done offline, the present work represents a significant step towards automating the tedious scripting of complex movements.
AbstractList While a lot of progress has recently been made in dynamic motion planning for humanoid robots, much of this work has remained limited to simulation. Here we show that executing the resulting trajectories on a Darwin-OP robot, even with local feedback derived from the optimizer, does not result in stable movements. We then develop a new trajectory optimization method, adapting our earlier CIO algorithm to plan through ensembles of perturbed models. This makes the plan robust to model uncertainty, and leads to successful execution on the robot. We obtain a high rate of task completion without trajectory divergence (falling) in dynamic forward walking, sideways walking, and turning, and a similarly high success rate in getting up from the floor (the robot broke before we could quantify the latter). Even though the planning is still done offline, the present work represents a significant step towards automating the tedious scripting of complex movements.
Author Mordatch, Igor
Lowrey, Kendall
Todorov, Emanuel
Author_xml – sequence: 1
  givenname: Igor
  surname: Mordatch
  fullname: Mordatch, Igor
  organization: Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA, USA
– sequence: 2
  givenname: Kendall
  surname: Lowrey
  fullname: Lowrey, Kendall
  organization: Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA, USA
– sequence: 3
  givenname: Emanuel
  surname: Todorov
  fullname: Todorov, Emanuel
  organization: Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA, USA
BookMark eNotj99KwzAchSMo6OYeQLzJC3T-0vxrvZOyzcKgoPN6pE1qI2lSmu6ib2_FHTicm48D3wrd-uANQk8EtoRA_lJ-VJ_bFAjfSsoZScUNWhEm878wcY82Mf4AAMkZ54Q9oNPOR9PXziRFWb3i_cW5pA56xnr2qrcN7sNkg8eDU95b_42nTk14GpWPrRkjngIeujnaRjncXXrlg9XxEd21ykWzue4afe13p-I9OVaHsng7JjaFbEoMyURuiNawVDGeNqlogYLM60bJmjFJF4FWSwYZZARESwQ1ul4wYFpyukbP_7_WGHMeRturcT5fxekvn5xQQg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS.2015.7354126
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479999946
9781479999941
EndPage 5314
ExternalDocumentID 7354126
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i208t-e1869e1dd01dda452c26f03079bca7b4473126fd740808106f163edbc2604d753
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-e1869e1dd01dda452c26f03079bca7b4473126fd740808106f163edbc2604d753
PageCount 8
ParticipantIDs ieee_primary_7354126
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE RSJ International Conference on Intelligent Robots and Systems (IROS)
PublicationTitleAbbrev IROS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001945514
Score 2.3996854
Snippet While a lot of progress has recently been made in dynamic motion planning for humanoid robots, much of this work has remained limited to simulation. Here we...
SourceID ieee
SourceType Publisher
StartPage 5307
SubjectTerms Computational modeling
Dynamics
Legged locomotion
Mathematical model
Trajectory
Uncertainty
Title Ensemble-CIO: Full-body dynamic motion planning that transfers to physical humanoids
URI https://ieeexplore.ieee.org/document/7354126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NdvPYbNdraalCrWgLvZVkM4tF3S02PeivN9ldWxQPHgIhJCRkEr6ZzEw-hK6oYtIdHUMUYwkRRnGiEsOIzri3gcBw6ZOTx_dyNBN382jeQNfbXBgAKIPPIPDV0pdvinTjn8q6MY8EZbKJmnFPVrlau_eURHjwrx2XNEy6t4-TJx-7FQX1uB8EKiV-DPfR-HvmKmzkJdhYHaSfvz5l_O_SDlBnl6mHH7YYdIgakLfRdJCv4U2_AunfTm6wtzKJLswHNhX9PK6oe_CqJizC9llZbEsV1mmD2BZ4VYsPlxx-xdKsO2g2HEz7I1KzJ5AlC3uWgCebAmpM6IoSEUuZzPyVTnSqYi1EzN2CMxOL0LNvhDJzqhkY7bqFwjgr5gi18iKHY4QzzZ3doR2OZVpEHHqUK6pEbJxuBpTDCWr7HVmsqg8yFvVmnP7dfIb2vFSqQK1z1LLvG7hwyG71ZSnSL9Dfo4M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCdzHvSkZjN-y8GjdC3QdvW6bNl0H0a3ZLcFymtcpu3i2EH_eqGtWzQePJAQAoHwIL_3eO_xQ-jGEzQwR0cRQWlEuBKMiEhRIhNmbSBQLLDJyYNh0J3w-6k_raDbTS4MAOTBZ-DYau7LV1m8tk9ljZD53KPBDtr1Oed-ka21fVGJuIX_0nXpuVGj9zR6ttFbvlOO_EGhkiNI5wANvucuAkcWzlpLJ_789S3jfxd3iOrbXD38uEGhI1SBtIbG7XQFb_IVSKs3usPWziQyUx9YFQT0uCDvwcuSsgjrF6GxzpVYow9ineFlKUCcs_hlc7Wqo0mnPW51ScmfQObUbWoClm4KPKVcUwT3aUyDxF7qSMYilJyHzCw4USF3Lf-GGyRGOQMlTTeXK2PHHKNqmqVwgnAimbE8pEGyRHKfQdNjwhM8VEY7A4_BKarZHZktiy8yZuVmnP3dfI32uuNBf9bvDR_O0b6VUBG2dYGq-n0NlwbntbzKxfsFkXim0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+RSJ+International+Conference+on+Intelligent+Robots+and+Systems+%28IROS%29&rft.atitle=Ensemble-CIO%3A+Full-body+dynamic+motion+planning+that+transfers+to+physical+humanoids&rft.au=Mordatch%2C+Igor&rft.au=Lowrey%2C+Kendall&rft.au=Todorov%2C+Emanuel&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=5307&rft.epage=5314&rft_id=info:doi/10.1109%2FIROS.2015.7354126&rft.externalDocID=7354126