A path algorithm for localizing anomalous activity in graphs
The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will address the localization of a cluster of activity in Gaussian noise in directed, w...
Saved in:
| Published in | 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) pp. 341 - 344 |
|---|---|
| Main Author | |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/GlobalSIP.2013.6736885 |
Cover
| Abstract | The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will address the localization of a cluster of activity in Gaussian noise in directed, weighted graphs. We develop a penalized likelihood estimator (we call the relaxed graph scan) as a relaxation of the NP-hard graph scan statistic. We review how the relaxed graph scan (RGS) can be solved using graph cuts, and outline the max-flow min-cut duality. We use this combinatorial duality to derive a path algorithm for the RGS by solving successive max flows. We demonstrate the effectiveness of the RGS on two simulations, over an undirected and directed graph. |
|---|---|
| AbstractList | The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will address the localization of a cluster of activity in Gaussian noise in directed, weighted graphs. We develop a penalized likelihood estimator (we call the relaxed graph scan) as a relaxation of the NP-hard graph scan statistic. We review how the relaxed graph scan (RGS) can be solved using graph cuts, and outline the max-flow min-cut duality. We use this combinatorial duality to derive a path algorithm for the RGS by solving successive max flows. We demonstrate the effectiveness of the RGS on two simulations, over an undirected and directed graph. |
| Author | Sharpnack, James |
| Author_xml | – sequence: 1 givenname: James surname: Sharpnack fullname: Sharpnack, James email: jsharpna@gmail.com organization: Machine Learning Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA |
| BookMark | eNotz91KwzAYgOEICrq5KxAkN9CaL_8BT8bQORgoqMfja5e0kbQpbRXm1Xvgjt6zB94Fuexz7wm5B1YCMPewTbnC9L57KzkDUWojtLXqgixAGucYl9Zdk9U0fTHGwBgwSt-QxzUdcG4ppiaPcW47GvJIU64xxd_YNxT73GHK3xPFeo4_cT7R2NNmxKGdbslVwDT51blL8vn89LF5Kfav291mvS8iZ3YuqtpA8FoEb7mrpWFGmaO09ghMVt5XjjnJgXvthOQIpg5OKBu4AKWVqVAsyd2_G733h2GMHY6nw3lQ_AFtekmY |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/GlobalSIP.2013.6736885 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479902489 9781479902484 |
| EndPage | 344 |
| ExternalDocumentID | 6736885 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i208t-bc71fe63fe829c470757d488d104beeb9094212e69342a17cf9358f2315657ba3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 04:19:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-bc71fe63fe829c470757d488d104beeb9094212e69342a17cf9358f2315657ba3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6736885 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |
| PublicationTitleAbbrev | GlobalSIP |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001771756 |
| Score | 1.5305686 |
| Snippet | The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 341 |
| SubjectTerms | Capacitance Computational modeling Computer vision Kernel Markov processes Social network services Surveillance |
| Title | A path algorithm for localizing anomalous activity in graphs |
| URI | https://ieeexplore.ieee.org/document/6736885 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0Xduk-QFeRBxTmAx0sNto0xctbq3M9rK_3qStG4oHb6W0pEl5-d7L-773ELoCKqgxIiGhjgRh0igiwyAlAlRkAs0Y853eefLExzP2OI_mHXS91cIAQE0-A89d1rn8tNCVOyobOg6SlFEXdYXkjVZrd54ibGAS8VYEHPhq2BTNf36YOgIX9dqXf3RRqUFktI8m38M33JF3ryoTT29-VWb87_cdoMFOroenWyA6RB3I--jmFrtuwzhevhbrrHxbYeue4hq6so19DMd5sYqXNvDHTtvgWkjgLMd1AevPAZqN7l_uxqRtlUCy0JclSbQIDHBqQIZKM2EdAZFa20xttJUAJMpGcRakgCvKwjgQ2rj8p7HOnUt7JjE9Qr28yOEYYa603QVTa8e-ZDROJTfKWnoUgvFNbPgJ6ruZLz6aahiLdtKnf98-Q3tu9RsCyDnqlesKLiyMl8ll_f--AAlznNM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedCTyib-NgePtuuPpEnAi4hj020M3GC30aaJFrdWZnvZX2_S1g3Fg7cS2pAQXr_38r7vPYAb6VNfKRpZniDUwkxxi3lubFHJiXIFxtgxeufhKOhN8dOMzBpwu9HCSClL8pm0zWOZy48zUZirso7hIDFGdmCX6ElIpdba3qhQHZqQoJYBuw7vVGXzX_pjQ-Hy7frzH31UShjpHsDwewEVe-TdLvLIFutftRn_u8JDaG8Fe2i8gaIjaMi0BXf3yPQbRuHiNVsl-dsSaQcVleCVrPVrKEyzZbjQoT8y6gbTRAIlKSpLWH-2Ydp9nDz0rLpZgpV4DsutSFBXycBXknlcYKpdARpr64x1vBVJGXEdx2mYkgH3sRe6VCiTAVXavTOJzyj0j6GZZqk8ARRwof-DsbZkh2E_jFmguLZ14knlqFAFp9AyO59_VPUw5vWmz_4evoa93mQ4mA_6o-dz2DcnUdFBLqCZrwp5qUE9j67Ks_wCcsKgIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=A+path+algorithm+for+localizing+anomalous+activity+in+graphs&rft.au=Sharpnack%2C+James&rft.date=2013-12-01&rft.pub=IEEE&rft.spage=341&rft.epage=344&rft_id=info:doi/10.1109%2FGlobalSIP.2013.6736885&rft.externalDocID=6736885 |