A path algorithm for localizing anomalous activity in graphs

The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will address the localization of a cluster of activity in Gaussian noise in directed, w...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) pp. 341 - 344
Main Author Sharpnack, James
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
DOI10.1109/GlobalSIP.2013.6736885

Cover

Abstract The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will address the localization of a cluster of activity in Gaussian noise in directed, weighted graphs. We develop a penalized likelihood estimator (we call the relaxed graph scan) as a relaxation of the NP-hard graph scan statistic. We review how the relaxed graph scan (RGS) can be solved using graph cuts, and outline the max-flow min-cut duality. We use this combinatorial duality to derive a path algorithm for the RGS by solving successive max flows. We demonstrate the effectiveness of the RGS on two simulations, over an undirected and directed graph.
AbstractList The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. We will address the localization of a cluster of activity in Gaussian noise in directed, weighted graphs. We develop a penalized likelihood estimator (we call the relaxed graph scan) as a relaxation of the NP-hard graph scan statistic. We review how the relaxed graph scan (RGS) can be solved using graph cuts, and outline the max-flow min-cut duality. We use this combinatorial duality to derive a path algorithm for the RGS by solving successive max flows. We demonstrate the effectiveness of the RGS on two simulations, over an undirected and directed graph.
Author Sharpnack, James
Author_xml – sequence: 1
  givenname: James
  surname: Sharpnack
  fullname: Sharpnack, James
  email: jsharpna@gmail.com
  organization: Machine Learning Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
BookMark eNotz91KwzAYgOEICrq5KxAkN9CaL_8BT8bQORgoqMfja5e0kbQpbRXm1Xvgjt6zB94Fuexz7wm5B1YCMPewTbnC9L57KzkDUWojtLXqgixAGucYl9Zdk9U0fTHGwBgwSt-QxzUdcG4ppiaPcW47GvJIU64xxd_YNxT73GHK3xPFeo4_cT7R2NNmxKGdbslVwDT51blL8vn89LF5Kfav291mvS8iZ3YuqtpA8FoEb7mrpWFGmaO09ghMVt5XjjnJgXvthOQIpg5OKBu4AKWVqVAsyd2_G733h2GMHY6nw3lQ_AFtekmY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GlobalSIP.2013.6736885
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479902489
9781479902484
EndPage 344
ExternalDocumentID 6736885
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i208t-bc71fe63fe829c470757d488d104beeb9094212e69342a17cf9358f2315657ba3
IEDL.DBID RIE
IngestDate Wed Aug 27 04:19:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-bc71fe63fe829c470757d488d104beeb9094212e69342a17cf9358f2315657ba3
PageCount 4
ParticipantIDs ieee_primary_6736885
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
PublicationTitleAbbrev GlobalSIP
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001771756
Score 1.5305686
Snippet The localization of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak...
SourceID ieee
SourceType Publisher
StartPage 341
SubjectTerms Capacitance
Computational modeling
Computer vision
Kernel
Markov processes
Social network services
Surveillance
Title A path algorithm for localizing anomalous activity in graphs
URI https://ieeexplore.ieee.org/document/6736885
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0Xduk-QFeRBxTmAx0sNto0xctbq3M9rK_3qStG4oHb6W0pEl5-d7L-773ELoCKqgxIiGhjgRh0igiwyAlAlRkAs0Y853eefLExzP2OI_mHXS91cIAQE0-A89d1rn8tNCVOyobOg6SlFEXdYXkjVZrd54ibGAS8VYEHPhq2BTNf36YOgIX9dqXf3RRqUFktI8m38M33JF3ryoTT29-VWb87_cdoMFOroenWyA6RB3I--jmFrtuwzhevhbrrHxbYeue4hq6so19DMd5sYqXNvDHTtvgWkjgLMd1AevPAZqN7l_uxqRtlUCy0JclSbQIDHBqQIZKM2EdAZFa20xttJUAJMpGcRakgCvKwjgQ2rj8p7HOnUt7JjE9Qr28yOEYYa603QVTa8e-ZDROJTfKWnoUgvFNbPgJ6ruZLz6aahiLdtKnf98-Q3tu9RsCyDnqlesKLiyMl8ll_f--AAlznNM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedCTyib-NgePtuuPpEnAi4hj020M3GC30aaJFrdWZnvZX2_S1g3Fg7cS2pAQXr_38r7vPYAb6VNfKRpZniDUwkxxi3lubFHJiXIFxtgxeufhKOhN8dOMzBpwu9HCSClL8pm0zWOZy48zUZirso7hIDFGdmCX6ElIpdba3qhQHZqQoJYBuw7vVGXzX_pjQ-Hy7frzH31UShjpHsDwewEVe-TdLvLIFutftRn_u8JDaG8Fe2i8gaIjaMi0BXf3yPQbRuHiNVsl-dsSaQcVleCVrPVrKEyzZbjQoT8y6gbTRAIlKSpLWH-2Ydp9nDz0rLpZgpV4DsutSFBXycBXknlcYKpdARpr64x1vBVJGXEdx2mYkgH3sRe6VCiTAVXavTOJzyj0j6GZZqk8ARRwof-DsbZkh2E_jFmguLZ14knlqFAFp9AyO59_VPUw5vWmz_4evoa93mQ4mA_6o-dz2DcnUdFBLqCZrwp5qUE9j67Ks_wCcsKgIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=A+path+algorithm+for+localizing+anomalous+activity+in+graphs&rft.au=Sharpnack%2C+James&rft.date=2013-12-01&rft.pub=IEEE&rft.spage=341&rft.epage=344&rft_id=info:doi/10.1109%2FGlobalSIP.2013.6736885&rft.externalDocID=6736885