A biomimetic adaptive fuzzy edge detection method based on visual features
Aiming at the poor performance of the lower contrast images edge detection, a fuzzy edge image extraction algorithm based on human eye visual features is proposed. Based on the global and local adaptive adjustment feature of human visual perception system, the traditional Pal and King fuzzy edge det...
Saved in:
| Published in | Chinese Control Conference pp. 3902 - 3906 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
TCCT
01.07.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1934-1768 |
| DOI | 10.1109/ChiCC.2016.7553960 |
Cover
| Abstract | Aiming at the poor performance of the lower contrast images edge detection, a fuzzy edge image extraction algorithm based on human eye visual features is proposed. Based on the global and local adaptive adjustment feature of human visual perception system, the traditional Pal and King fuzzy edge detection algorithm is optimized. By setting a nonlinear mapping model, the overall brightness of the image is adaptively adjusted according to the statistical characteristics of the image. Through a bilateral filtering method combined with the tri-Gaussian model and the single Gaussian model, the local contrast enhancement of the brightness of the image is realized. The experimental results show that the optimization algorithm in retaining the important edge information of image edge detection is more consistent with human subjective vision and improves the adaptability and practicability of the edge detection. |
|---|---|
| AbstractList | Aiming at the poor performance of the lower contrast images edge detection, a fuzzy edge image extraction algorithm based on human eye visual features is proposed. Based on the global and local adaptive adjustment feature of human visual perception system, the traditional Pal and King fuzzy edge detection algorithm is optimized. By setting a nonlinear mapping model, the overall brightness of the image is adaptively adjusted according to the statistical characteristics of the image. Through a bilateral filtering method combined with the tri-Gaussian model and the single Gaussian model, the local contrast enhancement of the brightness of the image is realized. The experimental results show that the optimization algorithm in retaining the important edge information of image edge detection is more consistent with human subjective vision and improves the adaptability and practicability of the edge detection. |
| Author | Hongge Ren Fujin Li Tao Shi Weimin Liu |
| Author_xml | – sequence: 1 givenname: Hongge surname: Ren fullname: Ren, Hongge – sequence: 2 givenname: Weimin surname: Liu fullname: Liu, Weimin – sequence: 3 givenname: Tao surname: Shi fullname: Shi, Tao – sequence: 4 givenname: Fujin surname: Li fullname: Li, Fujin |
| BookMark | eNotkL1qwzAYRdXSQps0L9AuGrs4lSxL-jQG018CXbIbRf7UqPgnteRA8vQ1JNPlwOEMd0Zuur5DQh45W3LOzEu5C2W5zBlXSy2lMIpdkYXRYAC4VMJwdk3uuRFFxrWCOzKL8ZcxxQwX9-RrRbehb0OLKThqa7tP4YDUj6fTkWL9g7TGhC6FvqOTs-trurURazrxIcTRNtSjTeOA8YHcettEXFx2TjZvr5vyI1t_v3-Wq3UWcgYpMw68k1AI73OW260RrsCaaQ0TOaM5OqPAMS8U5hI9ssKAqIUSAE4WYk6ez9n90P-NGFPVhuiwaWyH_RgrDkJKLXNQk_p0VgMiVvshtHY4VpeTxD87ZFzt |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7SP 8FD L7M |
| DOI | 10.1109/ChiCC.2016.7553960 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9789881563910 9881563917 |
| EISSN | 1934-1768 |
| EndPage | 3906 |
| ExternalDocumentID | 7553960 |
| Genre | orig-research |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL 7SP 8FD L7M |
| ID | FETCH-LOGICAL-i208t-9c8fc5843ff202ab93c4ed077802ac971ec968c0f36e25efe04983d36388c543 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 14:35:38 EDT 2025 Wed Aug 27 01:51:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-9c8fc5843ff202ab93c4ed077802ac971ec968c0f36e25efe04983d36388c543 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1835575286 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1835575286 ieee_primary_7553960 |
| PublicationCentury | 2000 |
| PublicationDate | 20160701 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 20160701 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese Control Conference |
| PublicationTitleAbbrev | ChiCC |
| PublicationYear | 2016 |
| Publisher | TCCT |
| Publisher_xml | – name: TCCT |
| SSID | ssj0060913 |
| Score | 1.9721841 |
| Snippet | Aiming at the poor performance of the lower contrast images edge detection, a fuzzy edge image extraction algorithm based on human eye visual features is... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 3902 |
| SubjectTerms | Adaptation models Adjustment Algorithm design and analysis Algorithms Brightness Edge detection Feature extraction Fuzzy Global adaptive Human eye vision Image contrast Image detection Image edge detection Local enhancement Pal and King algorithm Tri-Gaussian model Visual systems Visualization |
| Title | A biomimetic adaptive fuzzy edge detection method based on visual features |
| URI | https://ieeexplore.ieee.org/document/7553960 https://www.proquest.com/docview/1835575286 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTnrxYxPnFxE82q5r2iQ9SnGMgeJhwm6lTd5gUbvhWsH9epO0naIevDWHQHibvB_J8zwvQldEsLEac-qogBMnSGnkRGEGTsYV8wRQFSiLtrin08dgtggXHXS95cIAgAWfgWs-7Vu-XIrKXJWNWBgSnXF3UZdxWnO1Wq9Ljb5lS4rxolH8lMexQW5Rt5nVtE_55XNtIJnsobt2CTV-5NmtyswVmx_qjP9d4z4afFH28MM2GB2gDhSHaPeb2mAfzW6wIdvnr4a3iFOZroyrw6rabD6wuVbDEkqLzCpw3VgamxgnsR6_5-sqfcEKrA7oeoDmk9t5PHWaVgpO7nu8dCLBldC5BlHK9_w0i4gIQHqMcT0SERuDiCgXniIU_BAU6MKBE0n06eQiDMgR6hXLAo4RJlLxjAkd6XVpKXmYUaUzOCaZsqWdN0R9Y5RkVYtlJI09huiyNXuiN7B5lUgLWFbrRPuUUOeMPqcnf089RTvmP9YY2TPUK98qONeZQJld2C3wCV4Qs-k |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIALS0HsGIkjKWm85ogqUIEWcShSb1Fij0UFpIgmSPTrsZMWEHDgFh8sWRN7Fvu9NwAnVMuWbSkRWKZowFIRBzHPMMiUlaFGYZmt0Ba3onPPrgd8MAenn1wYRKzAZ9j0n9Vbvhnp0l-VnUnOqcu452GRM8Z4zdaa-V3hFS5ntJgwPms_DNttj90Szem8aQOVX163CiWXq9CbLaJGkDw2yyJr6skPfcb_rnINNr9Ie-TuMxytwxzmG7DyTW-wAdfnxNPth8-euUhSk754Z0dsOZm8E3-xRgwWFTYrJ3VraeKjnCFu_DYcl-kTsVgpgY43oX950W93gmkzhWAYhaoIYq2sdtkGtTYKozSLqWZoQimVG-lYtlDHQunQUoERR4uudFDUUHc-leaMbsFCPspxGwg1VmVSu1jvikujeCasy-GkkbYq7sIdaHijJC-1XEYytccOHM_Mnrgt7N8l0hxH5ThxXoW7rDFSYvfvqUew1On3ukn36vZmD5b9P60Rs_uwULyWeODygiI7rLbDB_ZbtzY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=A+biomimetic+adaptive+fuzzy+edge+detection+method+based+on+visual+features&rft.au=Hongge+Ren&rft.au=Weimin+Liu&rft.au=Tao+Shi&rft.au=Fujin+Li&rft.date=2016-07-01&rft.pub=TCCT&rft.eissn=1934-1768&rft.spage=3902&rft.epage=3906&rft_id=info:doi/10.1109%2FChiCC.2016.7553960&rft.externalDocID=7553960 |