Person re-identification using semantic color names and RankBoost

We address the problem of appearance-based person re-identification, which has been drawing an increasing amount of attention in computer vision. It is a very challenging task since the visual appearance of a person can change dramatically due to different backgrounds, camera characteristics, lighti...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Workshop on Applications of Computer Vision (WACV) pp. 281 - 287
Main Authors Cheng-Hao Kuo, Khamis, S., Shet, V.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.01.2013
Subjects
Online AccessGet full text
ISBN9781467350532
1467350532
ISSN1550-5790
1550-5790
DOI10.1109/WACV.2013.6475030

Cover

Abstract We address the problem of appearance-based person re-identification, which has been drawing an increasing amount of attention in computer vision. It is a very challenging task since the visual appearance of a person can change dramatically due to different backgrounds, camera characteristics, lighting conditions, view-points, and human poses. Among the recent studies on person re-id, color information plays a major role in terms of performance. Traditional color information like color histogram, however, still has much room to improve. We propose to apply semantic color names to describe a person image, and compute probability distribution on those basic color terms as image descriptors. To be better combined with other features, we define our appearance affinity model as linear combination of similarity measurements of corresponding local descriptors, and apply the RankBoost algorithm to find the optimal weights for the similarity measurements. We evaluate our proposed system on the highly challenging VIPeR dataset, and show improvements over the state-of-the-art methods in terms of widely used person re-id evaluation metrics.
AbstractList We address the problem of appearance-based person re-identification, which has been drawing an increasing amount of attention in computer vision. It is a very challenging task since the visual appearance of a person can change dramatically due to different backgrounds, camera characteristics, lighting conditions, view-points, and human poses. Among the recent studies on person re-id, color information plays a major role in terms of performance. Traditional color information like color histogram, however, still has much room to improve. We propose to apply semantic color names to describe a person image, and compute probability distribution on those basic color terms as image descriptors. To be better combined with other features, we define our appearance affinity model as linear combination of similarity measurements of corresponding local descriptors, and apply the RankBoost algorithm to find the optimal weights for the similarity measurements. We evaluate our proposed system on the highly challenging VIPeR dataset, and show improvements over the state-of-the-art methods in terms of widely used person re-id evaluation metrics.
Author Cheng-Hao Kuo
Khamis, S.
Shet, V.
Author_xml – sequence: 1
  surname: Cheng-Hao Kuo
  fullname: Cheng-Hao Kuo
  email: cheng-hao.kuo@siemens.com
  organization: Corp. Technol., Imaging & Comput. Vision, Siemens Corp., Princeton, NJ, USA
– sequence: 2
  givenname: S.
  surname: Khamis
  fullname: Khamis, S.
  email: sameh@umiacs.umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: V.
  surname: Shet
  fullname: Shet, V.
  email: vinay.shet@siemens.com
  organization: Corp. Technol., Imaging & Comput. Vision, Siemens Corp., Princeton, NJ, USA
BookMark eNpVkL1OwzAYRQ0UiVL6AIglI0vK59iO7bFE_EmVQIifMXKcz8iQ2CVOB96eSu0A05XOPbrDPSWTEAMSck5hQSnoq_dl9bYogLJFyaUABgdkrqWivJRMgOD6kEypEJALqeHoX8eKyZ_uhMxT-gQACoyXmk_J8gmHFEM2YO5bDKN33prRb8km-fCRJezNltrMxi4OWTA9psyENns24es6xjSekWNnuoTzfc7I6-3NS3Wfrx7vHqrlKvcFqDHXjWhaYZxwDgqKvBSSO80oKuGwsGgpV5SqlnPGhGoa4BKxtYrZ1pTSMTYjl7vd9RC_N5jGuvfJYteZgHGTaipVWVCpmdyqFzvVI2K9Hnxvhp96_x37BXJWXyc
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/WACV.2013.6475030
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781467350549
1467350524
9781467350525
1467350540
EISSN 1550-5790
EndPage 287
ExternalDocumentID 6475030
Genre orig-research
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-9b5bd5af5ff021e46574f931e85fe2cec148118d443358bb047eedc83cda67f33
IEDL.DBID RIE
ISBN 9781467350532
1467350532
ISSN 1550-5790
IngestDate Thu Jul 10 23:45:02 EDT 2025
Wed Aug 27 03:10:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-9b5bd5af5ff021e46574f931e85fe2cec148118d443358bb047eedc83cda67f33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1786217937
PQPubID 23500
PageCount 7
ParticipantIDs ieee_primary_6475030
proquest_miscellaneous_1786217937
PublicationCentury 2000
PublicationDate 2013-Jan.
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationTitle 2013 IEEE Workshop on Applications of Computer Vision (WACV)
PublicationTitleAbbrev WACV
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001034694
ssj0039193
Score 2.184814
Snippet We address the problem of appearance-based person re-identification, which has been drawing an increasing amount of attention in computer vision. It is a very...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 281
SubjectTerms Cameras
Color
Computer vision
Feature extraction
Histograms
Image color analysis
Mathematical models
Names
Probability distribution
Semantics
Similarity
Vectors
Workshops
Title Person re-identification using semantic color names and RankBoost
URI https://ieeexplore.ieee.org/document/6475030
https://www.proquest.com/docview/1786217937
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-QkydUMOJXauLRwra263ZEIiEmGGJEuZGufTOEuBkYF_96226DRD1425Ita997e31fv_cQulU2eRTEkggKijBFGUkSjxFFPeAyFKC1RSNPnsLxjD3O-byB7nZYGABwxWfQs5cul69ztbWhsn7IbNbNOOgHIgpLrNY-nuJR5jCcpRamse8a7loLnHARew7UFQrK7SiEutdTfV-lO30v7r8Nhq-24ov2qq9VY1d-6Wp3AI1aaFIvvaw7WfW2RdJTXz-6Ov53b0eos4f64enuEDtGDchOUKuyTXH152_aaDB1pjleA1nqqsLIMRXbyvl3vIEPw6OlwrYL9hpntvgWy0zjZ5mt7vN8U3TQbPTwMhyTavwCWQZeVJA44YnmMuVpagwBYCEXLI2pDxFPIVCgjCdl3BPNGKU8shwWZq0qokobJqeUnqJmlmdwhrCvaCqlTKWgMUukeVgKX0dmbyzUMZVd1LYUWXyWHTYWFTG66Kam-cJIvU1lyAzy7WbhGwEIrG4R53-_eoEOAze4wgZLLlGzWG_hypgPRXLt5OYbbB2-eg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGGDiVUR5GokRt0ltx8kICFQeRRVqoVvk2BdUVSSoSRd-PbabtBIwsCVSoth3jn2P77tD6ELZ5FE3kkRQUIQpykiSeIwo6gGXgQCtLRu5_xz0RuxhzMcNdLnkwgCAA59B2166XL7O1dyGyjoBs1k346Cvc8YYX7C1VhEVjzLH4lzswzTyXclda4MTLiLP0boCQblthlBXe6rvq4Sn70Wdt6ubV4v5ou3qe1XjlV-7tTuC7rZQvx78Ankybc_LpK2-ftR1_O_stlFzRfbDg-UxtoMakO2irco6xdW_X-yhq4EzzvEMyERXGCOnVmyx8--4gA-jpYnCtg72DGcWfotlpvGLzKbXeV6UTTS6ux3e9EjVgIFMul5YkijhieYy5WlqTAFgARcsjagPIU-hq0AZX8o4KJoxSnlodSzMWFVIlTZqTindR2tZnsEBwr6iqZQylYJGLJHmYSl8HZq5sUBHVLbQnpVI_LmosRFXwmih81rmsVn3NpkhM8jnRewL44vZ3UUc_v3qGdroDftP8dP98-MR2uy6NhY2dHKM1srZHE6MMVEmp24NfQOYoMHH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Workshop+on+Applications+of+Computer+Vision+%28WACV%29&rft.atitle=Person+re-identification+using+semantic+color+names+and+RankBoost&rft.au=Cheng-Hao+Kuo&rft.au=Khamis%2C+S.&rft.au=Shet%2C+V.&rft.date=2013-01-01&rft.pub=IEEE&rft.isbn=9781467350532&rft.issn=1550-5790&rft.spage=281&rft.epage=287&rft_id=info:doi/10.1109%2FWACV.2013.6475030&rft.externalDocID=6475030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5790&client=summon