Large-scale web video event classification by use of Fisher Vectors
Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level...
Saved in:
Published in | 2013 IEEE Workshop on Applications of Computer Vision (WACV) pp. 15 - 22 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.01.2013
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467350532 1467350532 |
ISSN | 1550-5790 1550-5790 |
DOI | 10.1109/WACV.2013.6474994 |
Cover
Abstract | Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level activities. We follow the approach of constructing fixed length feature vectors from local feature descriptors for classification using an SVM. Our key contribution is the study of the utility of Fisher Vector representation in improving results compared to the conventional Bag-of-Words (BoW) approach. Such coding has shown to be useful for static image classification in the past but not applied to video categorization. We perform tests on the challenging NIST TRECVID Multimedia Event Detection (MED) dataset, which has thousand hours of unconstrained user generated videos; our approach achieves as much as 35% improvement over the BoW baseline. We also offer an analysis of possible causes of such improvements. |
---|---|
AbstractList | Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level activities. We follow the approach of constructing fixed length feature vectors from local feature descriptors for classification using an SVM. Our key contribution is the study of the utility of Fisher Vector representation in improving results compared to the conventional Bag-of-Words (BoW) approach. Such coding has shown to be useful for static image classification in the past but not applied to video categorization. We perform tests on the challenging NIST TRECVID Multimedia Event Detection (MED) dataset, which has thousand hours of unconstrained user generated videos; our approach achieves as much as 35% improvement over the BoW baseline. We also offer an analysis of possible causes of such improvements. |
Author | Chen Sun Nevatia, Ram |
Author_xml | – sequence: 1 surname: Chen Sun fullname: Chen Sun email: chensun@usc.org organization: Inst. for Robot. & Intell. Syst., Univ. of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: Ram surname: Nevatia fullname: Nevatia, Ram email: nevatia@usc.org organization: Inst. for Robot. & Intell. Syst., Univ. of Southern California, Los Angeles, CA, USA |
BookMark | eNpVkD1PwzAURQ0UiVL6AxCLR5YUO_7KG1FEAakSC5QxcuxnMEqTEqdF_fdUageY7nCurnTuJRm1XYuEXHM245zB3ft9uZzljIuZlkYCyBMyBVNwqY1QTEk4JWOuFMuUAXb2j4l89IddkGlKX4wxzoTUIMekXNj-A7PkbIP0B2u6jR47iltsB-oam1IM0dkhdi2td3STkHaBzmP6xJ4u0Q1dn67IebBNwukxJ-Rt_vBaPmWLl8fn8n6RxZwVQwa6zhn4oJX3tREieG8NWC-sQsl8oYWtg9ECNISgrROANkcTarU3EdqJCbk97K777nuDaahWMTlsGttit0kVN4XmUKi93ITcHKoREat1H1e231XH98QvG_tf6A |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/WACV.2013.6474994 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781467350549 1467350524 9781467350525 1467350540 |
EISSN | 1550-5790 |
EndPage | 22 |
ExternalDocumentID | 6474994 |
Genre | orig-research |
GroupedDBID | 29G 29O 6IE 6IF 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-96b209df65ddb733fdda79ad3a5e40d863abf763969ff6ac39ea2e7fb573536c3 |
IEDL.DBID | RIE |
ISBN | 9781467350532 1467350532 |
ISSN | 1550-5790 |
IngestDate | Thu Jul 10 19:26:10 EDT 2025 Wed Aug 27 03:10:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-96b209df65ddb733fdda79ad3a5e40d863abf763969ff6ac39ea2e7fb573536c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1786198510 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1786198510 ieee_primary_6474994 |
PublicationCentury | 2000 |
PublicationDate | 2013-Jan. 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE Workshop on Applications of Computer Vision (WACV) |
PublicationTitleAbbrev | WACV |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001034694 ssj0039193 |
Score | 2.1454668 |
Snippet | Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 15 |
SubjectTerms | Cameras Classification Computer vision Encoding Feature extraction Histograms Image classification Kernel Mathematical analysis Multimedia Vectors Vectors (mathematics) Video data Visualization Workshops |
Title | Large-scale web video event classification by use of Fisher Vectors |
URI | https://ieeexplore.ieee.org/document/6474994 https://www.proquest.com/docview/1786198510 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWkT5kpEYcZrEjh2PqAJViCIGWrpFdnyREFKDSDPAr8d20lYCBrZkiJLcOeeXu3vvELoSeQyx0JpQrVPC7IZNXDGMSA08iXhoaO5SA7NHPp2z-2Wy7KDrLRcGAHzzGQTu0NfyTZnXLlU25kxYgM66qCuEbLhau3xKSJnncDZRmMrIC-46BE4SIUNP6uKCJm4UwkbraXPeljujUI5fbiYL1_FFg_Zu7diVX7Hab0B3fTTbPHrTd_IW1Gsd5F8_VB3_-277aLij-uGn7SZ2gDqwOkT9Fpvi9suvBmjy4FrGSWVdCtiGXuz4eyX2-k84dxDc9Rx5N2P9iesKcFngZrA6XvjSQDVE87vb58mUtAMYyGscpmsiuY5DaQqeGKMFpYUxSkhlqEqAhSblVOnCBijJZVFwlVMJKgZR6MTalfKcHqHeqlzBMcIGrPeZAKNMxBJQ0hpfW-gQGeYk_egIDZxNsvdGYyNrzTFClxurZ3bdu2KGWkFZV1kkUvvvZ_FiePL3padoL_ajK1y65Az11h81nFsAsdYXfuV8A90qvZA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VOMCJtyj7MhJHXJL4VR9RtagsLeLA6xbZ8URCSA0izQF-PbaTUgk47C05RE5mnJnPM_PNAByrIsNMWUuZtUPKvcOmIRlGtUUpUpk4VoTQwPRKjm_5vwfx0IOTDy4MIsbiMxyEy5jLd1XRhFDZqeTKA3S-AmvCnypUy9ZaRlQSxiOLs7XDTKex5W7A4FQonURal1RMhGEIi25Pi_su4Zkm-vT-bHQXar7YoFuvG7zyxVpHF3S-CdPFy7eVJ0-DZm4Hxdunvo7_-3VbsLck-5HrDze2DT2c7cBmh05J9-_XuzCahKJxWnulIvHGlwQGX0ViByhSBBAeqo6iool9JU2NpCpJO1qd3MXkQL0Ht-d_b0Zj2o1goI9ZMpxTLW2WaFdK4ZxVjJXOGaWNY0YgT9xQMmNLb6K01GUpTcE0mgxVaYWXK5MF24fVWTXDAyAOvf65QmdcygUa7YVvPXhIHQ9N_VgfdoNM8ue2y0beiaMPRwup537nh3SGmWHV1Hmqhv705xFjcvj9o39gfXwzneSTi6vLH7CRxUEWIXjyE1bnLw3-8nBibn_HXfQOB3HA4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Workshop+on+Applications+of+Computer+Vision+%28WACV%29&rft.atitle=Large-scale+web+video+event+classification+by+use+of+Fisher+Vectors&rft.au=Chen+Sun&rft.au=Nevatia%2C+Ram&rft.date=2013-01-01&rft.pub=IEEE&rft.isbn=9781467350532&rft.issn=1550-5790&rft.spage=15&rft.epage=22&rft_id=info:doi/10.1109%2FWACV.2013.6474994&rft.externalDocID=6474994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5790&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5790&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5790&client=summon |