Large-scale web video event classification by use of Fisher Vectors

Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Workshop on Applications of Computer Vision (WACV) pp. 15 - 22
Main Authors Chen Sun, Nevatia, Ram
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.01.2013
Subjects
Online AccessGet full text
ISBN9781467350532
1467350532
ISSN1550-5790
1550-5790
DOI10.1109/WACV.2013.6474994

Cover

Abstract Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level activities. We follow the approach of constructing fixed length feature vectors from local feature descriptors for classification using an SVM. Our key contribution is the study of the utility of Fisher Vector representation in improving results compared to the conventional Bag-of-Words (BoW) approach. Such coding has shown to be useful for static image classification in the past but not applied to video categorization. We perform tests on the challenging NIST TRECVID Multimedia Event Detection (MED) dataset, which has thousand hours of unconstrained user generated videos; our approach achieves as much as 35% improvement over the BoW baseline. We also offer an analysis of possible causes of such improvements.
AbstractList Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken from a fixed camera, known environments and basic events. Here, we focus on classification of unconstrained, web videos into much higher level activities. We follow the approach of constructing fixed length feature vectors from local feature descriptors for classification using an SVM. Our key contribution is the study of the utility of Fisher Vector representation in improving results compared to the conventional Bag-of-Words (BoW) approach. Such coding has shown to be useful for static image classification in the past but not applied to video categorization. We perform tests on the challenging NIST TRECVID Multimedia Event Detection (MED) dataset, which has thousand hours of unconstrained user generated videos; our approach achieves as much as 35% improvement over the BoW baseline. We also offer an analysis of possible causes of such improvements.
Author Chen Sun
Nevatia, Ram
Author_xml – sequence: 1
  surname: Chen Sun
  fullname: Chen Sun
  email: chensun@usc.org
  organization: Inst. for Robot. & Intell. Syst., Univ. of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Ram
  surname: Nevatia
  fullname: Nevatia, Ram
  email: nevatia@usc.org
  organization: Inst. for Robot. & Intell. Syst., Univ. of Southern California, Los Angeles, CA, USA
BookMark eNpVkD1PwzAURQ0UiVL6AxCLR5YUO_7KG1FEAakSC5QxcuxnMEqTEqdF_fdUageY7nCurnTuJRm1XYuEXHM245zB3ft9uZzljIuZlkYCyBMyBVNwqY1QTEk4JWOuFMuUAXb2j4l89IddkGlKX4wxzoTUIMekXNj-A7PkbIP0B2u6jR47iltsB-oam1IM0dkhdi2td3STkHaBzmP6xJ4u0Q1dn67IebBNwukxJ-Rt_vBaPmWLl8fn8n6RxZwVQwa6zhn4oJX3tREieG8NWC-sQsl8oYWtg9ECNISgrROANkcTarU3EdqJCbk97K777nuDaahWMTlsGttit0kVN4XmUKi93ITcHKoREat1H1e231XH98QvG_tf6A
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/WACV.2013.6474994
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781467350549
1467350524
9781467350525
1467350540
EISSN 1550-5790
EndPage 22
ExternalDocumentID 6474994
Genre orig-research
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-96b209df65ddb733fdda79ad3a5e40d863abf763969ff6ac39ea2e7fb573536c3
IEDL.DBID RIE
ISBN 9781467350532
1467350532
ISSN 1550-5790
IngestDate Thu Jul 10 19:26:10 EDT 2025
Wed Aug 27 03:10:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-96b209df65ddb733fdda79ad3a5e40d863abf763969ff6ac39ea2e7fb573536c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1786198510
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1786198510
ieee_primary_6474994
PublicationCentury 2000
PublicationDate 2013-Jan.
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationTitle 2013 IEEE Workshop on Applications of Computer Vision (WACV)
PublicationTitleAbbrev WACV
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001034694
ssj0039193
Score 2.1454668
Snippet Event recognition has been an important topic in computer vision research due to its many applications. However, most of the work has focused on videos taken...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 15
SubjectTerms Cameras
Classification
Computer vision
Encoding
Feature extraction
Histograms
Image classification
Kernel
Mathematical analysis
Multimedia
Vectors
Vectors (mathematics)
Video data
Visualization
Workshops
Title Large-scale web video event classification by use of Fisher Vectors
URI https://ieeexplore.ieee.org/document/6474994
https://www.proquest.com/docview/1786198510
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWkT5kpEYcZrEjh2PqAJViCIGWrpFdnyREFKDSDPAr8d20lYCBrZkiJLcOeeXu3vvELoSeQyx0JpQrVPC7IZNXDGMSA08iXhoaO5SA7NHPp2z-2Wy7KDrLRcGAHzzGQTu0NfyTZnXLlU25kxYgM66qCuEbLhau3xKSJnncDZRmMrIC-46BE4SIUNP6uKCJm4UwkbraXPeljujUI5fbiYL1_FFg_Zu7diVX7Hab0B3fTTbPHrTd_IW1Gsd5F8_VB3_-277aLij-uGn7SZ2gDqwOkT9Fpvi9suvBmjy4FrGSWVdCtiGXuz4eyX2-k84dxDc9Rx5N2P9iesKcFngZrA6XvjSQDVE87vb58mUtAMYyGscpmsiuY5DaQqeGKMFpYUxSkhlqEqAhSblVOnCBijJZVFwlVMJKgZR6MTalfKcHqHeqlzBMcIGrPeZAKNMxBJQ0hpfW-gQGeYk_egIDZxNsvdGYyNrzTFClxurZ3bdu2KGWkFZV1kkUvvvZ_FiePL3padoL_ajK1y65Az11h81nFsAsdYXfuV8A90qvZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VOMCJtyj7MhJHXJL4VR9RtagsLeLA6xbZ8URCSA0izQF-PbaTUgk47C05RE5mnJnPM_PNAByrIsNMWUuZtUPKvcOmIRlGtUUpUpk4VoTQwPRKjm_5vwfx0IOTDy4MIsbiMxyEy5jLd1XRhFDZqeTKA3S-AmvCnypUy9ZaRlQSxiOLs7XDTKex5W7A4FQonURal1RMhGEIi25Pi_su4Zkm-vT-bHQXar7YoFuvG7zyxVpHF3S-CdPFy7eVJ0-DZm4Hxdunvo7_-3VbsLck-5HrDze2DT2c7cBmh05J9-_XuzCahKJxWnulIvHGlwQGX0ViByhSBBAeqo6iool9JU2NpCpJO1qd3MXkQL0Ht-d_b0Zj2o1goI9ZMpxTLW2WaFdK4ZxVjJXOGaWNY0YgT9xQMmNLb6K01GUpTcE0mgxVaYWXK5MF24fVWTXDAyAOvf65QmdcygUa7YVvPXhIHQ9N_VgfdoNM8ue2y0beiaMPRwup537nh3SGmWHV1Hmqhv705xFjcvj9o39gfXwzneSTi6vLH7CRxUEWIXjyE1bnLw3-8nBibn_HXfQOB3HA4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Workshop+on+Applications+of+Computer+Vision+%28WACV%29&rft.atitle=Large-scale+web+video+event+classification+by+use+of+Fisher+Vectors&rft.au=Chen+Sun&rft.au=Nevatia%2C+Ram&rft.date=2013-01-01&rft.pub=IEEE&rft.isbn=9781467350532&rft.issn=1550-5790&rft.spage=15&rft.epage=22&rft_id=info:doi/10.1109%2FWACV.2013.6474994&rft.externalDocID=6474994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5790&client=summon