Bolstering Heuristics for Statistical Validation of Prediction Algorithms

Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a princ...

Full description

Saved in:
Bibliographic Details
Published in2015 International Workshop on Pattern Recognition in NeuroImaging pp. 77 - 80
Main Authors Mendelson, Alex F., Zuluaga, Maria A., Hutton, Brian F., Ourselin, Sebastien
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
DOI10.1109/PRNI.2015.16

Cover

Abstract Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a principle by which existing statistical tests can be conservatively extended to make use of arbitrary numbers of repeated experiments. We apply this to the problems of interval estimation and pair wise comparison for the accuracy of classification algorithms, and test the resulting procedures on real and synthetic classification tasks. The interval coverages in the synthetic task are notably improved, and the comparison has both increased power and reduced type I error. Experiments in the ADNI dataset show that the low replicability of split-half based tests can be dramatically improved.
AbstractList Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a principle by which existing statistical tests can be conservatively extended to make use of arbitrary numbers of repeated experiments. We apply this to the problems of interval estimation and pair wise comparison for the accuracy of classification algorithms, and test the resulting procedures on real and synthetic classification tasks. The interval coverages in the synthetic task are notably improved, and the comparison has both increased power and reduced type I error. Experiments in the ADNI dataset show that the low replicability of split-half based tests can be dramatically improved.
Author Zuluaga, Maria A.
Mendelson, Alex F.
Hutton, Brian F.
Ourselin, Sebastien
Author_xml – sequence: 1
  givenname: Alex F.
  surname: Mendelson
  fullname: Mendelson, Alex F.
  organization: Centre for Med. Image Comput., Univ. Coll. London, London, UK
– sequence: 2
  givenname: Maria A.
  surname: Zuluaga
  fullname: Zuluaga, Maria A.
  organization: Centre for Med. Image Comput., Univ. Coll. London, London, UK
– sequence: 3
  givenname: Brian F.
  surname: Hutton
  fullname: Hutton, Brian F.
  organization: Inst. of Nucl. Med., Univ. Coll. London, London, UK
– sequence: 4
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
  organization: Centre for Med. Image Comput., Univ. Coll. London, London, UK
BookMark eNotjDtPwzAYAI0EElCysbH4DyT4_dljqaCNVEHFa60c2ymW0hjZYeDfUwrT6W64S3Q6pjEgdE1JQykxt5vnx7ZhhMqGqhNUGdBUKOBAhWTnqColdoQpUJIIfoHauzSUKeQ47vAqfOVYpugK7lPGL5OdjmoH_G6H6A-aRpx6vMnBR3e0-bBLOU4f-3KFzno7lFD9c4beHu5fF6t6_bRsF_N1HRnRU22UCJZZKYymANT11HMdgGgHXtPf7oUKAuCQDddSsOBtJ3tGXGfAeT5DN3_fGELYfua4t_l7C-ywkIz_ANsWTOc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PRNI.2015.16
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467371452
1467371459
EndPage 80
ExternalDocumentID 7270852
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i208t-964ea2a54981771cf1d38e708c7d81a549d46e477d38938542edab5f20cb97cd3
IEDL.DBID RIE
IngestDate Wed Dec 20 05:18:43 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-964ea2a54981771cf1d38e708c7d81a549d46e477d38938542edab5f20cb97cd3
PageCount 4
ParticipantIDs ieee_primary_7270852
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Workshop on Pattern Recognition in NeuroImaging
PublicationTitleAbbrev PRNI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765043
Score 1.5791237
Snippet Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime,...
SourceID ieee
SourceType Publisher
StartPage 77
SubjectTerms Accuracy
Automatic diagnosis
Cross validation
Estimation
Imaging
Prediction algorithms
Statistical tests
Support vector machines
Testing
Training
Title Bolstering Heuristics for Statistical Validation of Prediction Algorithms
URI https://ieeexplore.ieee.org/document/7270852
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhxmjh27IyAqFqkVhWiqFsV22eoKAkqycKvx07aghADW3xDYtlR3rv43TuELimzxuEuEM5lTHyGQDKtQmIhjjQ3glrmq5FH42QwZfczPmuhq20tDADU4jMI_GV9lm8KXflfZT2HtY4huA_ujhBpU6u1eXdoIhJvxrXVtqe9ycN46LVbPPDNzH_0Tqmho7-HRpuHNoqR16AqVaA_f_kx_ndW-6j7XaSHJ1v4OUAtyDtoeFMsvfWBi-ABVGsbZuyYKfa0sh5mS_zk2HfTTAkX1t3Fn9bUo-vlc7FalC9vH1007d893g7IulsCWdBQliRNGGQ0c_mejISItI1MLMFNTQsjIx83LAEmhPEcRXJGwWSKWxpqlQpt4kPUzoscjhC2RimXuCYWVMoks1nMhTFhYpViLiNUx6jjl2H-3hhizNcrcPJ3-BTt-l1o9FVnqF2uKjh3SF6qi3oLvwAbs6B6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG6WedCTms342x48CoPSUjiqcWG6LYvZzG4LbV91cYKZcPGvt4VtGuPBG30HaFrC9z36ve8hdEmoVgZ3wWEsChybITipFJ6jIfAlU5xoaquRB8MwmdD7KZs20NWmFgYAKvEZuPayOstXuSztr7KOwVrDEMwHd4uZrILX1Vrrt4eEPLR2XBt1e9wZPQ57Vr3FXNvO_Ef3lAo8urtosH5srRl5dctCuPLzlyPjf-e1h9rfZXp4tAGgfdSArIV6N_nCmh-YCE6gXBkxY8NNsSWW1TBd4CfDv-t2SjjX5i72vKYaXS-e8-W8eHn7aKNJ9258mzirfgnOnHhR4cQhhZSkJuOLfM59qX0VRGCmJrmKfBtXNATKubIsJWKUgEoF08STIuZSBQeomeUZHCKslRAmdQ01iJhGVKcB40p5oRaCmpxQHKGWXYbZe22JMVutwPHf4Qu0nYwH_Vm_N3w4QTt2R2q11SlqFssSzgyuF-K82s4vuUSjyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Workshop+on+Pattern+Recognition+in+NeuroImaging&rft.atitle=Bolstering+Heuristics+for+Statistical+Validation+of+Prediction+Algorithms&rft.au=Mendelson%2C+Alex+F.&rft.au=Zuluaga%2C+Maria+A.&rft.au=Hutton%2C+Brian+F.&rft.au=Ourselin%2C+Sebastien&rft.date=2015-06-01&rft.pub=IEEE&rft.spage=77&rft.epage=80&rft_id=info:doi/10.1109%2FPRNI.2015.16&rft.externalDocID=7270852