Bolstering Heuristics for Statistical Validation of Prediction Algorithms
Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a princ...
Saved in:
Published in | 2015 International Workshop on Pattern Recognition in NeuroImaging pp. 77 - 80 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/PRNI.2015.16 |
Cover
Abstract | Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a principle by which existing statistical tests can be conservatively extended to make use of arbitrary numbers of repeated experiments. We apply this to the problems of interval estimation and pair wise comparison for the accuracy of classification algorithms, and test the resulting procedures on real and synthetic classification tasks. The interval coverages in the synthetic task are notably improved, and the comparison has both increased power and reduced type I error. Experiments in the ADNI dataset show that the low replicability of split-half based tests can be dramatically improved. |
---|---|
AbstractList | Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a principle by which existing statistical tests can be conservatively extended to make use of arbitrary numbers of repeated experiments. We apply this to the problems of interval estimation and pair wise comparison for the accuracy of classification algorithms, and test the resulting procedures on real and synthetic classification tasks. The interval coverages in the synthetic task are notably improved, and the comparison has both increased power and reduced type I error. Experiments in the ADNI dataset show that the low replicability of split-half based tests can be dramatically improved. |
Author | Zuluaga, Maria A. Mendelson, Alex F. Hutton, Brian F. Ourselin, Sebastien |
Author_xml | – sequence: 1 givenname: Alex F. surname: Mendelson fullname: Mendelson, Alex F. organization: Centre for Med. Image Comput., Univ. Coll. London, London, UK – sequence: 2 givenname: Maria A. surname: Zuluaga fullname: Zuluaga, Maria A. organization: Centre for Med. Image Comput., Univ. Coll. London, London, UK – sequence: 3 givenname: Brian F. surname: Hutton fullname: Hutton, Brian F. organization: Inst. of Nucl. Med., Univ. Coll. London, London, UK – sequence: 4 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien organization: Centre for Med. Image Comput., Univ. Coll. London, London, UK |
BookMark | eNotjDtPwzAYAI0EElCysbH4DyT4_dljqaCNVEHFa60c2ymW0hjZYeDfUwrT6W64S3Q6pjEgdE1JQykxt5vnx7ZhhMqGqhNUGdBUKOBAhWTnqColdoQpUJIIfoHauzSUKeQ47vAqfOVYpugK7lPGL5OdjmoH_G6H6A-aRpx6vMnBR3e0-bBLOU4f-3KFzno7lFD9c4beHu5fF6t6_bRsF_N1HRnRU22UCJZZKYymANT11HMdgGgHXtPf7oUKAuCQDddSsOBtJ3tGXGfAeT5DN3_fGELYfua4t_l7C-ywkIz_ANsWTOc |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PRNI.2015.16 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781467371452 1467371459 |
EndPage | 80 |
ExternalDocumentID | 7270852 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i208t-964ea2a54981771cf1d38e708c7d81a549d46e477d38938542edab5f20cb97cd3 |
IEDL.DBID | RIE |
IngestDate | Wed Dec 20 05:18:43 EST 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-964ea2a54981771cf1d38e708c7d81a549d46e477d38938542edab5f20cb97cd3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7270852 |
PublicationCentury | 2000 |
PublicationDate | 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 International Workshop on Pattern Recognition in NeuroImaging |
PublicationTitleAbbrev | PRNI |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026765043 |
Score | 1.5791237 |
Snippet | Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 77 |
SubjectTerms | Accuracy Automatic diagnosis Cross validation Estimation Imaging Prediction algorithms Statistical tests Support vector machines Testing Training |
Title | Bolstering Heuristics for Statistical Validation of Prediction Algorithms |
URI | https://ieeexplore.ieee.org/document/7270852 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhxmjh27IyAqFqkVhWiqFsV22eoKAkqycKvx07aghADW3xDYtlR3rv43TuELimzxuEuEM5lTHyGQDKtQmIhjjQ3glrmq5FH42QwZfczPmuhq20tDADU4jMI_GV9lm8KXflfZT2HtY4huA_ujhBpU6u1eXdoIhJvxrXVtqe9ycN46LVbPPDNzH_0Tqmho7-HRpuHNoqR16AqVaA_f_kx_ndW-6j7XaSHJ1v4OUAtyDtoeFMsvfWBi-ABVGsbZuyYKfa0sh5mS_zk2HfTTAkX1t3Fn9bUo-vlc7FalC9vH1007d893g7IulsCWdBQliRNGGQ0c_mejISItI1MLMFNTQsjIx83LAEmhPEcRXJGwWSKWxpqlQpt4kPUzoscjhC2RimXuCYWVMoks1nMhTFhYpViLiNUx6jjl2H-3hhizNcrcPJ3-BTt-l1o9FVnqF2uKjh3SF6qi3oLvwAbs6B6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG6WedCTms342x48CoPSUjiqcWG6LYvZzG4LbV91cYKZcPGvt4VtGuPBG30HaFrC9z36ve8hdEmoVgZ3wWEsChybITipFJ6jIfAlU5xoaquRB8MwmdD7KZs20NWmFgYAKvEZuPayOstXuSztr7KOwVrDEMwHd4uZrILX1Vrrt4eEPLR2XBt1e9wZPQ57Vr3FXNvO_Ef3lAo8urtosH5srRl5dctCuPLzlyPjf-e1h9rfZXp4tAGgfdSArIV6N_nCmh-YCE6gXBkxY8NNsSWW1TBd4CfDv-t2SjjX5i72vKYaXS-e8-W8eHn7aKNJ9258mzirfgnOnHhR4cQhhZSkJuOLfM59qX0VRGCmJrmKfBtXNATKubIsJWKUgEoF08STIuZSBQeomeUZHCKslRAmdQ01iJhGVKcB40p5oRaCmpxQHKGWXYbZe22JMVutwPHf4Qu0nYwH_Vm_N3w4QTt2R2q11SlqFssSzgyuF-K82s4vuUSjyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Workshop+on+Pattern+Recognition+in+NeuroImaging&rft.atitle=Bolstering+Heuristics+for+Statistical+Validation+of+Prediction+Algorithms&rft.au=Mendelson%2C+Alex+F.&rft.au=Zuluaga%2C+Maria+A.&rft.au=Hutton%2C+Brian+F.&rft.au=Ourselin%2C+Sebastien&rft.date=2015-06-01&rft.pub=IEEE&rft.spage=77&rft.epage=80&rft_id=info:doi/10.1109%2FPRNI.2015.16&rft.externalDocID=7270852 |