Graph-Based Method for Detecting Occupy Protest Events Using GDELT Dataset

Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in social science research and also can provide reference for government's emergency management. Existing methods mainly solve this proble...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery pp. 164 - 168
Main Authors Fengcai Qiao, Pei Li, Jingsheng Deng, Zhaoyun Ding, Hui Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2015
Subjects
Online AccessGet full text
DOI10.1109/CyberC.2015.77

Cover

Abstract Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in social science research and also can provide reference for government's emergency management. Existing methods mainly solve this problem by document clustering techniques. This paper proposes a novel graph-based occupy protest event detection framework which applies sub graph pattern mining for this task. A wealth of event data about Occupy Wall Street in New York and Occupy Central in Hong Kong from the Global Data on Events, Location, and Tone (GDELT) are utilized in the work. Experimental results on these datasets show that the proposed method can achieve higher detection accuracy with 0.921 on average and MCC value 0.748, outperforming the baseline method.
AbstractList Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in social science research and also can provide reference for government's emergency management. Existing methods mainly solve this problem by document clustering techniques. This paper proposes a novel graph-based occupy protest event detection framework which applies sub graph pattern mining for this task. A wealth of event data about Occupy Wall Street in New York and Occupy Central in Hong Kong from the Global Data on Events, Location, and Tone (GDELT) are utilized in the work. Experimental results on these datasets show that the proposed method can achieve higher detection accuracy with 0.921 on average and MCC value 0.748, outperforming the baseline method.
Author Jingsheng Deng
Hui Wang
Pei Li
Zhaoyun Ding
Fengcai Qiao
Author_xml – sequence: 1
  surname: Fengcai Qiao
  fullname: Fengcai Qiao
  email: fcqiao@nudt.edu.cn
  organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 2
  surname: Pei Li
  fullname: Pei Li
  organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 3
  surname: Jingsheng Deng
  fullname: Jingsheng Deng
  organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 4
  surname: Zhaoyun Ding
  fullname: Zhaoyun Ding
  organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China
– sequence: 5
  surname: Hui Wang
  fullname: Hui Wang
  organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China
BookMark eNotjMFOhDAUAGuiibpy9eKlPwC-V5aWHhVw1WDWw-5508KrS6JA2mrC36vR0xwmM5fsdJxGYuwaIUMEfVstlnyVCcAiU-qEJVqVuJYq1wJAnrMkhMGCkEoWgPqCPW-8mY_pvQnU8xeKx6nnbvK8pkhdHMY3vu26z3nhr36KFCJvvmiMge_Dr9vUTbvjtYk_ebxiZ868B0r-uWL7h2ZXPabtdvNU3bXpIKCMqaROayusQ9mtiRSghUIJbVBLKgslEXJtcgRbWmcdoOpRF85YKoXsnchX7ObvOxDRYfbDh_HLQeWgSpD5NyO1TLE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CyberC.2015.77
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Government
EISBN 9781467392006
1467392006
9781467391993
1467391999
EndPage 168
ExternalDocumentID 7307806
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i208t-6ec99b2bf16c4ee701b05729a196e85761039a310b8bfbf017d195fabe826df23
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:00 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-6ec99b2bf16c4ee701b05729a196e85761039a310b8bfbf017d195fabe826df23
PageCount 5
ParticipantIDs ieee_primary_7307806
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
PublicationTitleAbbrev CYBERC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765019
Score 1.6698984
Snippet Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in...
SourceID ieee
SourceType Publisher
StartPage 164
SubjectTerms Accuracy
Data mining
Event detection
GDELT
Government
graph mining
Measurement
Monitoring
occupy protest event
Training
Title Graph-Based Method for Detecting Occupy Protest Events Using GDELT Dataset
URI https://ieeexplore.ieee.org/document/7307806
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYoE1MfUPUtDx2bEAcnttcCBaFSdQCJDdnxWaoqQUXDQH99zw4PterQLYpkO7J9uu9y331HyD1LNQIJxyNmCgxQOpKjSTkbpbrIBOeC26DdOX7Jh1M-mmWzGnnY18IAQCCfQewfQy7fLou1_1XWxtsopNfXPhIyr2q1dncnzQViDaa2uowsUe3uxsCq69lbWSx-dk8JzuPpmIx3y1ackfd4XZq4-PqlyPjf7zohrUOZHn3dO6BTUoPFGWkcuuc2yWjg9aijR3RVlo5Ds2iKKJX2wOcOcBANKsMbPw1izpL2Pf3xkwYiAR30-s8T2tMlDi9bZPrUn3SH0bZ7QvSWJrKMciiUMqlxLC84gEiYQWyWKo02BxLDDJ8E1ojujDTOOLRMy1TmtAGMOKxLO-ekvlgu4IJQwAksS1wuwXKbaeX5MkZor4cmDXQuSdNvyvyjEsiYb_fj6u_X16Thz6Qiat2Qerlawy169tLchSP9BoW2o30
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYQHcrUB1R910PHJsTBSZy1QKGUoA4gsSE7PktVJahoGOiv79nhoVYdukWRbEe2T_dd7rvvCLlnoUQgYbjHVI4BSktwNCmjvVDmUcJ5wrXT7sxGcX_CB9NoWiEPu1oYAHDkM_Dto8vl60W-sr_KmngbE2H1tQ8iznlUVmttb08YJ4g2WLpRZmRB2myvFSzblr8V-cnP_inOfTwdkWy7cMkaefdXhfLzr1-ajP_9smPS2Bfq0dedCzohFZifktq-f26dDHpWkdp7RGelaebaRVPEqbQDNnuAg6jTGV7baRB1FrRrCZCf1FEJaK_THY5pRxY4vGiQyVN33O57m_4J3lsYiMKLIU9TFSrD4pwDJAFTiM7CVKLVgcBAw6aBJeI7JZRRBm1TszQyUgHGHNqErTNSnS_mcE4o4ASaBSYWoLmOZGoZMyqRVhFNKGhdkLrdlNlHKZEx2-zH5d-v78hhf5wNZ8Pn0csVqdnzKWlb16RaLFdwg36-ULfueL8BRN-myg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Cyber-Enabled+Distributed+Computing+and+Knowledge+Discovery&rft.atitle=Graph-Based+Method+for+Detecting+Occupy+Protest+Events+Using+GDELT+Dataset&rft.au=Fengcai+Qiao&rft.au=Pei+Li&rft.au=Jingsheng+Deng&rft.au=Zhaoyun+Ding&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=164&rft.epage=168&rft_id=info:doi/10.1109%2FCyberC.2015.77&rft.externalDocID=7307806