Graph-Based Method for Detecting Occupy Protest Events Using GDELT Dataset
Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in social science research and also can provide reference for government's emergency management. Existing methods mainly solve this proble...
        Saved in:
      
    
          | Published in | 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery pp. 164 - 168 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.09.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/CyberC.2015.77 | 
Cover
| Abstract | Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in social science research and also can provide reference for government's emergency management. Existing methods mainly solve this problem by document clustering techniques. This paper proposes a novel graph-based occupy protest event detection framework which applies sub graph pattern mining for this task. A wealth of event data about Occupy Wall Street in New York and Occupy Central in Hong Kong from the Global Data on Events, Location, and Tone (GDELT) are utilized in the work. Experimental results on these datasets show that the proposed method can achieve higher detection accuracy with 0.921 on average and MCC value 0.748, outperforming the baseline method. | 
    
|---|---|
| AbstractList | Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in social science research and also can provide reference for government's emergency management. Existing methods mainly solve this problem by document clustering techniques. This paper proposes a novel graph-based occupy protest event detection framework which applies sub graph pattern mining for this task. A wealth of event data about Occupy Wall Street in New York and Occupy Central in Hong Kong from the Global Data on Events, Location, and Tone (GDELT) are utilized in the work. Experimental results on these datasets show that the proposed method can achieve higher detection accuracy with 0.921 on average and MCC value 0.748, outperforming the baseline method. | 
    
| Author | Jingsheng Deng Hui Wang Pei Li Zhaoyun Ding Fengcai Qiao  | 
    
| Author_xml | – sequence: 1 surname: Fengcai Qiao fullname: Fengcai Qiao email: fcqiao@nudt.edu.cn organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China – sequence: 2 surname: Pei Li fullname: Pei Li organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China – sequence: 3 surname: Jingsheng Deng fullname: Jingsheng Deng organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China – sequence: 4 surname: Zhaoyun Ding fullname: Zhaoyun Ding organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China – sequence: 5 surname: Hui Wang fullname: Hui Wang organization: Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China  | 
    
| BookMark | eNotjMFOhDAUAGuiibpy9eKlPwC-V5aWHhVw1WDWw-5508KrS6JA2mrC36vR0xwmM5fsdJxGYuwaIUMEfVstlnyVCcAiU-qEJVqVuJYq1wJAnrMkhMGCkEoWgPqCPW-8mY_pvQnU8xeKx6nnbvK8pkhdHMY3vu26z3nhr36KFCJvvmiMge_Dr9vUTbvjtYk_ebxiZ868B0r-uWL7h2ZXPabtdvNU3bXpIKCMqaROayusQ9mtiRSghUIJbVBLKgslEXJtcgRbWmcdoOpRF85YKoXsnchX7ObvOxDRYfbDh_HLQeWgSpD5NyO1TLE | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CyberC.2015.77 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Government | 
    
| EISBN | 9781467392006 1467392006 9781467391993 1467391999  | 
    
| EndPage | 168 | 
    
| ExternalDocumentID | 7307806 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL  | 
    
| ID | FETCH-LOGICAL-i208t-6ec99b2bf16c4ee701b05729a196e85761039a310b8bfbf017d195fabe826df23 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Dec 20 05:19:00 EST 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i208t-6ec99b2bf16c4ee701b05729a196e85761039a310b8bfbf017d195fabe826df23 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_7307806 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20150901 | 
    
| PublicationDateYYYYMMDD | 2015-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2015 text: 20150901 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery | 
    
| PublicationTitleAbbrev | CYBERC | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssib026765019 | 
    
| Score | 1.6698984 | 
    
| Snippet | Recent years have witnessed a series of occupy protest events all over the world. Detecting and monitoring these events is an important and challenging task in... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 164 | 
    
| SubjectTerms | Accuracy Data mining Event detection GDELT Government graph mining Measurement Monitoring occupy protest event Training  | 
    
| Title | Graph-Based Method for Detecting Occupy Protest Events Using GDELT Dataset | 
    
| URI | https://ieeexplore.ieee.org/document/7307806 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYoE1MfUPUtDx2bEAcnttcCBaFSdQCJDdnxWaoqQUXDQH99zw4PterQLYpkO7J9uu9y331HyD1LNQIJxyNmCgxQOpKjSTkbpbrIBOeC26DdOX7Jh1M-mmWzGnnY18IAQCCfQewfQy7fLou1_1XWxtsopNfXPhIyr2q1dncnzQViDaa2uowsUe3uxsCq69lbWSx-dk8JzuPpmIx3y1ackfd4XZq4-PqlyPjf7zohrUOZHn3dO6BTUoPFGWkcuuc2yWjg9aijR3RVlo5Ds2iKKJX2wOcOcBANKsMbPw1izpL2Pf3xkwYiAR30-s8T2tMlDi9bZPrUn3SH0bZ7QvSWJrKMciiUMqlxLC84gEiYQWyWKo02BxLDDJ8E1ojujDTOOLRMy1TmtAGMOKxLO-ekvlgu4IJQwAksS1wuwXKbaeX5MkZor4cmDXQuSdNvyvyjEsiYb_fj6u_X16Thz6Qiat2Qerlawy169tLchSP9BoW2o30 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYQHcrUB1R910PHJsTBSZy1QKGUoA4gsSE7PktVJahoGOiv79nhoVYdukWRbEe2T_dd7rvvCLlnoUQgYbjHVI4BSktwNCmjvVDmUcJ5wrXT7sxGcX_CB9NoWiEPu1oYAHDkM_Dto8vl60W-sr_KmngbE2H1tQ8iznlUVmttb08YJ4g2WLpRZmRB2myvFSzblr8V-cnP_inOfTwdkWy7cMkaefdXhfLzr1-ajP_9smPS2Bfq0dedCzohFZifktq-f26dDHpWkdp7RGelaebaRVPEqbQDNnuAg6jTGV7baRB1FrRrCZCf1FEJaK_THY5pRxY4vGiQyVN33O57m_4J3lsYiMKLIU9TFSrD4pwDJAFTiM7CVKLVgcBAw6aBJeI7JZRRBm1TszQyUgHGHNqErTNSnS_mcE4o4ASaBSYWoLmOZGoZMyqRVhFNKGhdkLrdlNlHKZEx2-zH5d-v78hhf5wNZ8Pn0csVqdnzKWlb16RaLFdwg36-ULfueL8BRN-myg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Cyber-Enabled+Distributed+Computing+and+Knowledge+Discovery&rft.atitle=Graph-Based+Method+for+Detecting+Occupy+Protest+Events+Using+GDELT+Dataset&rft.au=Fengcai+Qiao&rft.au=Pei+Li&rft.au=Jingsheng+Deng&rft.au=Zhaoyun+Ding&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=164&rft.epage=168&rft_id=info:doi/10.1109%2FCyberC.2015.77&rft.externalDocID=7307806 |