An optimized hybrid dynamic Bayesian network approach using differential evolution algorithm for the diagnosis of Hepatocellular Carcinoma

Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver cancer). Evolutionary algorithms have lent themselves as efficient and robust methods for evolving best parameter values that optimize featu...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Adaptive Science and Technology pp. 1 - 6
Main Authors Akutekwe, Arinze, Seker, Huseyin, Iliya, Sunday
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.10.2014
Subjects
Online AccessGet full text
ISSN2326-9413
2326-9448
DOI10.1109/ICASTECH.2014.7068140

Cover

Abstract Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver cancer). Evolutionary algorithms have lent themselves as efficient and robust methods for evolving best parameter values that optimize feature selection methods. Different computational methods for discovering more robust set of molecular features for liver cancer have been proposed. These include methods combining other nature-inspired evolutionary algorithms such as Particle Swarm Optimization, with classifiers like Support Vector Machine (SVM). In this paper, we apply different variants of Differential Evolution algorithm to optimize the parameters of feature selection algorithms using a proposed two-stage approach. Stage one fine-tunes the parameters of the feature selection methods and selects high quality features. In stage two, Dynamic Bayesian Network (DBN) is applied to infer temporal relationships of the selected features. We demonstrate our method using gene expression profiles of liver cancer patients. The results show that the SVM-based predictive model with the radial basis function kernel yielded a predictive accuracy of 100%. This model and a sub-set of the features consist of only 8 features (genes) that have been regarded as most informative set for the diagnosis of the disease. In addition, among all these eight genes, the DBN model of the selected features reveals that SPINT2 gene inhibits HGF activator which prevents the formation of active hepatocytes growth factor, which makes up over 80% of liver cells.
AbstractList Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver cancer). Evolutionary algorithms have lent themselves as efficient and robust methods for evolving best parameter values that optimize feature selection methods. Different computational methods for discovering more robust set of molecular features for liver cancer have been proposed. These include methods combining other nature-inspired evolutionary algorithms such as Particle Swarm Optimization, with classifiers like Support Vector Machine (SVM). In this paper, we apply different variants of Differential Evolution algorithm to optimize the parameters of feature selection algorithms using a proposed two-stage approach. Stage one fine-tunes the parameters of the feature selection methods and selects high quality features. In stage two, Dynamic Bayesian Network (DBN) is applied to infer temporal relationships of the selected features. We demonstrate our method using gene expression profiles of liver cancer patients. The results show that the SVM-based predictive model with the radial basis function kernel yielded a predictive accuracy of 100%. This model and a sub-set of the features consist of only 8 features (genes) that have been regarded as most informative set for the diagnosis of the disease. In addition, among all these eight genes, the DBN model of the selected features reveals that SPINT2 gene inhibits HGF activator which prevents the formation of active hepatocytes growth factor, which makes up over 80% of liver cells.
Author Iliya, Sunday
Seker, Huseyin
Akutekwe, Arinze
Author_xml – sequence: 1
  givenname: Arinze
  surname: Akutekwe
  fullname: Akutekwe, Arinze
  email: aakutekwe@dmu.ac.uk
  organization: Bio-Health Inf. Res. Group, De Montfort Univ., Leicester, UK
– sequence: 2
  givenname: Huseyin
  surname: Seker
  fullname: Seker, Huseyin
  email: hseker@dmu.ac.uk
  organization: Bio-Health Inf. Res. Group, De Montfort Univ., Leicester, UK
– sequence: 3
  givenname: Sunday
  surname: Iliya
  fullname: Iliya, Sunday
  email: sundayiliyagoteng@yahoo.com
  organization: Centre for Comput. Intell., De Montfort Univ., Leicester, UK
BookMark eNo9kM9KAzEYxKNUsGqfQIQcvbQm-zc51lKtUPBgPZfP5Esb3U3WJKvUR_CprVQ8zRx-DDNzRgbOOyTkirMJ50zePMymT6v5bDHJGC8mNasEL9gRGcl6b2opCylFcUyGWZ5VY1kUYvDveX5KRjG-MsY4q4XI5JB8Tx31XbKt_UJNt7uXYDXVOwetVfQWdhgtOOowffrwRqHrgge1pX20bkO1NQYDumShofjhmz5Z7yg0Gx9s2rbU-EDTFvcgbJyPNlJv6AI7SF5h0_QNBDqDoKzzLVyQEwNNxNGfnpPnu_lqthgvH-_3q5djmzGRxhXTVakY6IIp9YJlVoEwRpRCA2CBoPPKoBGKlYCl5pBVypicqZxrCTWI_JxcH3L3W957jGnd2vhbBxz6Pq55zWSd5Zz_opcH1CLiugu2hbBb_52e_wDHonsP
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICASTECH.2014.7068140
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479949984
1479949981
EISSN 2326-9448
EndPage 6
ExternalDocumentID 7068140
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-60d65c0ad40ccbe526a8ff858daae4ead36fef8c05ae5d1a26cff30c31d9a7a83
IEDL.DBID RIE
ISSN 2326-9413
IngestDate Fri Sep 05 04:32:36 EDT 2025
Wed Aug 27 02:04:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-60d65c0ad40ccbe526a8ff858daae4ead36fef8c05ae5d1a26cff30c31d9a7a83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1709723118
PQPubID 23500
PageCount 6
ParticipantIDs ieee_primary_7068140
proquest_miscellaneous_1709723118
PublicationCentury 2000
PublicationDate 20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 20141001
  day: 01
PublicationDecade 2010
PublicationTitle IEEE International Conference on Adaptive Science and Technology
PublicationTitleAbbrev ICASTECH
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001078829
Score 1.5805566
Snippet Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accuracy
Bayes methods
Bayesian analysis
Biological system modeling
Biomarkers
Cancer
Diagnosis
Differenctial Evolution
Dynamic Bayesian Network
Evolutionary algorithms
Gene Expression
Genes
Hepatocellular Carcinoma
Liver
Mathematical models
Support Vector Machine
Support vector machines
Title An optimized hybrid dynamic Bayesian network approach using differential evolution algorithm for the diagnosis of Hepatocellular Carcinoma
URI https://ieeexplore.ieee.org/document/7068140
https://www.proquest.com/docview/1709723118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ7iwtIiyaZA4kpJmcexjiVoVJBASReJWOV5oRZsgSJHaT-CrGScpRcCBWw5JNLLHM2P7zXuEnDHMYgFPjKMCzzi4_wodrjhzqIu5z_e4VEmBtril_Yfg-jF8XCPnX70wWusCfKZb9rG4y1eZnNmjsovIpZagaZ2sR4yWvVqr8xTMdawQJcMagTocg3PVsNN2-cVV3LkfdOO-xXIFreo_laDKryhcpJbeFrlZGlUiSp5bszxpycUPvsb_Wr1NGqsmPrj7Sk87ZE2nu2TzG_9gnXx0UsgwZkzHC61gNLfdW6BKjXq4FHNtOywhLZHisKQfB4uVf4KltAqGiAno98qFQUyestdxPpoClsOA5SW-WKD5xm-QGehj-ssze11g8a8QWymjNJuKBnnodQdx36nEGZyx57IcJ1PRULpCBa6UiQ49KpgxLGRKCB2gf_rUaMOkGwodqrbwqDTGd6XfVlxEgvl7pJZmqd4nEIXC0tgFkisdRIImwijclRkjufQNE01St6M6fCn5N4bVgDbJ6XLehrgmrOUi1dnsbdiOLCmRj3ung78_PSQb1hFKUN4RqeWvM32MxUWenBRe9Qn11dJl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLS9UAoVFFqmEsdmySa2Yx_pChQooEpdJG6R4w9YlU0qyCLBT-BXM06yUNEeesshiUb2eGZsv3kPYEdSFmOq9JFliY9o_8UjZZWMREy5L02UsWWLtjgV-Rk7OufnC_D1qRfGOdeCz9wgPLZ3-bY2s3BUtpvFIhA0vYIlzhjjXbfW84kKZTvZypJRlSAiReG5b9kZxmr3cLT3c7w_ygOaiw36P_WSKn_F4Ta5HCzDydysDlPyazBryoG5f8HY-L92v4O15zY-_PGUoFZgwVXv4e0fDISr8LBXYU1RYzq5dxYv70L_FtpOpR6_6TsXeiyx6rDiOCcgx4CWv8C5uAoFiSt0t70To766qK8nzeUUqSBGKjDpxRbPN7nB2mNOCbCpw4VBQMDiKIgZVfVUr8HZwf54lEe9PEM0SWLZ0HRawU2sLYuNKR1PhJbeSy6t1o6Rh6bCOy9NzLXjdqgTYbxPY5MOrdKZlukHWKzqyq0DZlwHIjtmlHUs06LU3tK-zHujTOql3oDVMKrF746Bo-gHdAO-zOetoFURLNeVq2c3xTALtEQp7Z4-_vvTbXidj0-Oi-PD0--b8CY4RQfR24LF5nrmPlGp0ZSfWw97BBsi1bI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Adaptive+Science+and+Technology&rft.atitle=An+optimized+hybrid+dynamic+Bayesian+network+approach+using+differential+evolution+algorithm+for+the+diagnosis+of+Hepatocellular+Carcinoma&rft.au=Akutekwe%2C+Arinze&rft.au=Seker%2C+Huseyin&rft.au=Iliya%2C+Sunday&rft.date=2014-10-01&rft.pub=IEEE&rft.issn=2326-9413&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICASTECH.2014.7068140&rft.externalDocID=7068140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-9413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-9413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-9413&client=summon