An optimized hybrid dynamic Bayesian network approach using differential evolution algorithm for the diagnosis of Hepatocellular Carcinoma
Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver cancer). Evolutionary algorithms have lent themselves as efficient and robust methods for evolving best parameter values that optimize featu...
Saved in:
| Published in | IEEE International Conference on Adaptive Science and Technology pp. 1 - 6 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
IEEE
01.10.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2326-9413 2326-9448 |
| DOI | 10.1109/ICASTECH.2014.7068140 |
Cover
| Abstract | Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver cancer). Evolutionary algorithms have lent themselves as efficient and robust methods for evolving best parameter values that optimize feature selection methods. Different computational methods for discovering more robust set of molecular features for liver cancer have been proposed. These include methods combining other nature-inspired evolutionary algorithms such as Particle Swarm Optimization, with classifiers like Support Vector Machine (SVM). In this paper, we apply different variants of Differential Evolution algorithm to optimize the parameters of feature selection algorithms using a proposed two-stage approach. Stage one fine-tunes the parameters of the feature selection methods and selects high quality features. In stage two, Dynamic Bayesian Network (DBN) is applied to infer temporal relationships of the selected features. We demonstrate our method using gene expression profiles of liver cancer patients. The results show that the SVM-based predictive model with the radial basis function kernel yielded a predictive accuracy of 100%. This model and a sub-set of the features consist of only 8 features (genes) that have been regarded as most informative set for the diagnosis of the disease. In addition, among all these eight genes, the DBN model of the selected features reveals that SPINT2 gene inhibits HGF activator which prevents the formation of active hepatocytes growth factor, which makes up over 80% of liver cells. |
|---|---|
| AbstractList | Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver cancer). Evolutionary algorithms have lent themselves as efficient and robust methods for evolving best parameter values that optimize feature selection methods. Different computational methods for discovering more robust set of molecular features for liver cancer have been proposed. These include methods combining other nature-inspired evolutionary algorithms such as Particle Swarm Optimization, with classifiers like Support Vector Machine (SVM). In this paper, we apply different variants of Differential Evolution algorithm to optimize the parameters of feature selection algorithms using a proposed two-stage approach. Stage one fine-tunes the parameters of the feature selection methods and selects high quality features. In stage two, Dynamic Bayesian Network (DBN) is applied to infer temporal relationships of the selected features. We demonstrate our method using gene expression profiles of liver cancer patients. The results show that the SVM-based predictive model with the radial basis function kernel yielded a predictive accuracy of 100%. This model and a sub-set of the features consist of only 8 features (genes) that have been regarded as most informative set for the diagnosis of the disease. In addition, among all these eight genes, the DBN model of the selected features reveals that SPINT2 gene inhibits HGF activator which prevents the formation of active hepatocytes growth factor, which makes up over 80% of liver cells. |
| Author | Iliya, Sunday Seker, Huseyin Akutekwe, Arinze |
| Author_xml | – sequence: 1 givenname: Arinze surname: Akutekwe fullname: Akutekwe, Arinze email: aakutekwe@dmu.ac.uk organization: Bio-Health Inf. Res. Group, De Montfort Univ., Leicester, UK – sequence: 2 givenname: Huseyin surname: Seker fullname: Seker, Huseyin email: hseker@dmu.ac.uk organization: Bio-Health Inf. Res. Group, De Montfort Univ., Leicester, UK – sequence: 3 givenname: Sunday surname: Iliya fullname: Iliya, Sunday email: sundayiliyagoteng@yahoo.com organization: Centre for Comput. Intell., De Montfort Univ., Leicester, UK |
| BookMark | eNo9kM9KAzEYxKNUsGqfQIQcvbQm-zc51lKtUPBgPZfP5Esb3U3WJKvUR_CprVQ8zRx-DDNzRgbOOyTkirMJ50zePMymT6v5bDHJGC8mNasEL9gRGcl6b2opCylFcUyGWZ5VY1kUYvDveX5KRjG-MsY4q4XI5JB8Tx31XbKt_UJNt7uXYDXVOwetVfQWdhgtOOowffrwRqHrgge1pX20bkO1NQYDumShofjhmz5Z7yg0Gx9s2rbU-EDTFvcgbJyPNlJv6AI7SF5h0_QNBDqDoKzzLVyQEwNNxNGfnpPnu_lqthgvH-_3q5djmzGRxhXTVakY6IIp9YJlVoEwRpRCA2CBoPPKoBGKlYCl5pBVypicqZxrCTWI_JxcH3L3W957jGnd2vhbBxz6Pq55zWSd5Zz_opcH1CLiugu2hbBb_52e_wDHonsP |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICASTECH.2014.7068140 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781479949984 1479949981 |
| EISSN | 2326-9448 |
| EndPage | 6 |
| ExternalDocumentID | 7068140 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-60d65c0ad40ccbe526a8ff858daae4ead36fef8c05ae5d1a26cff30c31d9a7a83 |
| IEDL.DBID | RIE |
| ISSN | 2326-9413 |
| IngestDate | Fri Sep 05 04:32:36 EDT 2025 Wed Aug 27 02:04:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-60d65c0ad40ccbe526a8ff858daae4ead36fef8c05ae5d1a26cff30c31d9a7a83 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1709723118 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7068140 proquest_miscellaneous_1709723118 |
| PublicationCentury | 2000 |
| PublicationDate | 20141001 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 20141001 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE International Conference on Adaptive Science and Technology |
| PublicationTitleAbbrev | ICASTECH |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001078829 |
| Score | 1.5805566 |
| Snippet | Computational Intelligence methods have been applied to the automatic discovery of predictive models for the diagnosis of Hepatocellular Carcinoma (a.k.a liver... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Bayes methods Bayesian analysis Biological system modeling Biomarkers Cancer Diagnosis Differenctial Evolution Dynamic Bayesian Network Evolutionary algorithms Gene Expression Genes Hepatocellular Carcinoma Liver Mathematical models Support Vector Machine Support vector machines |
| Title | An optimized hybrid dynamic Bayesian network approach using differential evolution algorithm for the diagnosis of Hepatocellular Carcinoma |
| URI | https://ieeexplore.ieee.org/document/7068140 https://www.proquest.com/docview/1709723118 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ7iwtIiyaZA4kpJmcexjiVoVJBASReJWOV5oRZsgSJHaT-CrGScpRcCBWw5JNLLHM2P7zXuEnDHMYgFPjKMCzzi4_wodrjhzqIu5z_e4VEmBtril_Yfg-jF8XCPnX70wWusCfKZb9rG4y1eZnNmjsovIpZagaZ2sR4yWvVqr8xTMdawQJcMagTocg3PVsNN2-cVV3LkfdOO-xXIFreo_laDKryhcpJbeFrlZGlUiSp5bszxpycUPvsb_Wr1NGqsmPrj7Sk87ZE2nu2TzG_9gnXx0UsgwZkzHC61gNLfdW6BKjXq4FHNtOywhLZHisKQfB4uVf4KltAqGiAno98qFQUyestdxPpoClsOA5SW-WKD5xm-QGehj-ssze11g8a8QWymjNJuKBnnodQdx36nEGZyx57IcJ1PRULpCBa6UiQ49KpgxLGRKCB2gf_rUaMOkGwodqrbwqDTGd6XfVlxEgvl7pJZmqd4nEIXC0tgFkisdRIImwijclRkjufQNE01St6M6fCn5N4bVgDbJ6XLehrgmrOUi1dnsbdiOLCmRj3ung78_PSQb1hFKUN4RqeWvM32MxUWenBRe9Qn11dJl |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLS9UAoVFFqmEsdmySa2Yx_pChQooEpdJG6R4w9YlU0qyCLBT-BXM06yUNEeesshiUb2eGZsv3kPYEdSFmOq9JFliY9o_8UjZZWMREy5L02UsWWLtjgV-Rk7OufnC_D1qRfGOdeCz9wgPLZ3-bY2s3BUtpvFIhA0vYIlzhjjXbfW84kKZTvZypJRlSAiReG5b9kZxmr3cLT3c7w_ygOaiw36P_WSKn_F4Ta5HCzDydysDlPyazBryoG5f8HY-L92v4O15zY-_PGUoFZgwVXv4e0fDISr8LBXYU1RYzq5dxYv70L_FtpOpR6_6TsXeiyx6rDiOCcgx4CWv8C5uAoFiSt0t70To766qK8nzeUUqSBGKjDpxRbPN7nB2mNOCbCpw4VBQMDiKIgZVfVUr8HZwf54lEe9PEM0SWLZ0HRawU2sLYuNKR1PhJbeSy6t1o6Rh6bCOy9NzLXjdqgTYbxPY5MOrdKZlukHWKzqyq0DZlwHIjtmlHUs06LU3tK-zHujTOql3oDVMKrF746Bo-gHdAO-zOetoFURLNeVq2c3xTALtEQp7Z4-_vvTbXidj0-Oi-PD0--b8CY4RQfR24LF5nrmPlGp0ZSfWw97BBsi1bI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Adaptive+Science+and+Technology&rft.atitle=An+optimized+hybrid+dynamic+Bayesian+network+approach+using+differential+evolution+algorithm+for+the+diagnosis+of+Hepatocellular+Carcinoma&rft.au=Akutekwe%2C+Arinze&rft.au=Seker%2C+Huseyin&rft.au=Iliya%2C+Sunday&rft.date=2014-10-01&rft.pub=IEEE&rft.issn=2326-9413&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICASTECH.2014.7068140&rft.externalDocID=7068140 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-9413&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-9413&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-9413&client=summon |