FaceNet: A unified embedding for face recognition and clustering

Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face im...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 815 - 823
Main Authors Schroff, Florian, Kalenichenko, Dmitry, Philbin, James
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2015.7298682

Cover

Abstract Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings asfeature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-artface recognition performance using only 128-bytes perface. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets.
AbstractList Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings asfeature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-artface recognition performance using only 128-bytes perface. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets.
Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors.
Author Kalenichenko, Dmitry
Schroff, Florian
Philbin, James
Author_xml – sequence: 1
  givenname: Florian
  surname: Schroff
  fullname: Schroff, Florian
  email: fschroff@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 2
  givenname: Dmitry
  surname: Kalenichenko
  fullname: Kalenichenko, Dmitry
  email: dkalenichenko@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 3
  givenname: James
  surname: Philbin
  fullname: Philbin, James
  email: jphilbin@google.com
  organization: Google Inc., Mountain View, CA, USA
BookMark eNpN0EtLw0AUBeBRKtjW_gBxM0s3qfNyHq4sxapQVETdhpvJnTKQTmomWfjvDdSFq3sWHwfOnZFJahMScsnZknPmbtZfb-9Lwfjt0ghntRUnZMaVNlI7rdgpmXKmZaEdd5N_-Zwsco4Vk4xZ5wSbkvsNeHzB_o6u6JBiiFhT3FdY1zHtaGg7GkZAO_TtLsU-tolCqqlvhtxjN5oLchagybj4u3PyuXn4WD8V29fH5_VqW0TBbF8ocFIJH8AIzz0A9x4UKC-DqESQFoyCWshgKyOZgnEDB1VVgXujta0rOSfXx95D134PmPtyH7PHpoGE7ZBLbgyTwjptR3p1pBERy0MX99D9lH9_kr9Dt1tq
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2015.7298682
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EISSN 1063-6919
EndPage 823
ExternalDocumentID 7298682
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-4a9342cfa72c1caa1cca4a4c3f2b2f38a74ad23f8b7304a6401a4bbf1c7668db3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Sep 05 03:43:17 EDT 2025
Wed Aug 27 02:49:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-4a9342cfa72c1caa1cca4a4c3f2b2f38a74ad23f8b7304a6401a4bbf1c7668db3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770328968
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1770328968
ieee_primary_7298682
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
ssj0003211698
Score 2.5799558
Snippet Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 815
SubjectTerms Accuracy
Artificial neural networks
Clustering
Computer vision
Conferences
Euclidean geometry
Face
Face recognition
Pattern recognition
Principal component analysis
Similarity
Tasks
Training
Title FaceNet: A unified embedding for face recognition and clustering
URI https://ieeexplore.ieee.org/document/7298682
https://www.proquest.com/docview/1770328968
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7Vkyff-CaCR7c22WwenpRiKUKLiBVvJclOQNSt2N2Lv97JdreCevC2hGQfM7OTbzIvQs6CdcHmGUuk1CYRIH1ihIIkM9IyyLw3taE4GsvhRNw-ZU8dcr7MhQGAOvgMuvGy9uXnM1_Fo7ILBIJaalS4Kyhmi1ytVnbSXvRfNdAnauEULRtplh4FHrux1J5PmSbSMNN4OFnPXPQf7-5jkFfWbR7QdFr5pZ7rPWewTkbt2y5CTV66Vem6_vNHIcf_fs4G2fnO7qN3y31rk3Sg2CLrDRylzc8-x6G240M7tk2uBtbDGMpLek2r4jnEBfDmII93ooh_acAJdBmVNCuoLXLqX6tYjwHn7JDJ4OahP0yaHgzJM-_pMhHWpIL7YBX3zFvLkOPCCp8G7nhItVXC5jwN2qGqEFaiuWaFc4F5hdzPXbpLVotZAXuEKgXcIsBESmtUG8bpnCtAPjnPgtLZPtmONJq-L8psTBvy7JPTlgtTFP3oz7AFzKr5lCkVqwEaqQ_-XnpI1iJbF5FdR2S1_KjgGDFE6U5q4fkC6kzBQA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQHNoT5VEB5eFKPZLdteP4wQmEWC2UXaFqF-0tsp2xhFqyVUku_HrG2WSRKAdukWXnMTMZf-N5EfIjWBdskbFESm0SAdInRihIMiMtg8x70xiK44kczcTNPJuvkdNVLgwANMFn0IuXjS-_WPg6HpX1EQhqqVHhbmRoVehltlYnPekgerBa8BP1cIq2jTQrnwKP_Vga36dME2mYaX2cbGD6l_d3v2KYV9ZrH9H2WvlPQTe7znCTjLv3XQab_O7Vlev55zelHD_6QV_I7mt-H71b7VxbZA3KbbLZAlLa_u5PONT1fOjGdsj50HqYQHVGL2hdPoS4AB4dFPFOFBEwDTiBruKSFiW1ZUH9nzpWZMA5u2Q2vJpejpK2C0PywAe6SoQ1qeA-WMU989Yy5LmwwqeBOx5SbZWwBU-DdqgshJVosFnhXGBeIf8Ll34l6-WihD1ClQJuEWIipTXyzzhdcAXIJ-dZUDrbJzuRRvnfZaGNvCXPPvnecSFH4Y8eDVvCon7KmVKxHqCR-uD9pSfk02g6vs1vryc_v5HPkcXLOK9Dsl79q-EIEUXljhtBegFHn8ST
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=FaceNet%3A+A+unified+embedding+for+face+recognition+and+clustering&rft.au=Schroff%2C+Florian&rft.au=Kalenichenko%2C+Dmitry&rft.au=Philbin%2C+James&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=815&rft.epage=823&rft_id=info:doi/10.1109%2FCVPR.2015.7298682&rft.externalDocID=7298682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon