FaceNet: A unified embedding for face recognition and clustering
Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face im...
Saved in:
Published in | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 815 - 823 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2015.7298682 |
Cover
Abstract | Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings asfeature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-artface recognition performance using only 128-bytes perface. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets. |
---|---|
AbstractList | Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings asfeature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-artface recognition performance using only 128-bytes perface. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets. Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors. |
Author | Kalenichenko, Dmitry Schroff, Florian Philbin, James |
Author_xml | – sequence: 1 givenname: Florian surname: Schroff fullname: Schroff, Florian email: fschroff@google.com organization: Google Inc., Mountain View, CA, USA – sequence: 2 givenname: Dmitry surname: Kalenichenko fullname: Kalenichenko, Dmitry email: dkalenichenko@google.com organization: Google Inc., Mountain View, CA, USA – sequence: 3 givenname: James surname: Philbin fullname: Philbin, James email: jphilbin@google.com organization: Google Inc., Mountain View, CA, USA |
BookMark | eNpN0EtLw0AUBeBRKtjW_gBxM0s3qfNyHq4sxapQVETdhpvJnTKQTmomWfjvDdSFq3sWHwfOnZFJahMScsnZknPmbtZfb-9Lwfjt0ghntRUnZMaVNlI7rdgpmXKmZaEdd5N_-Zwsco4Vk4xZ5wSbkvsNeHzB_o6u6JBiiFhT3FdY1zHtaGg7GkZAO_TtLsU-tolCqqlvhtxjN5oLchagybj4u3PyuXn4WD8V29fH5_VqW0TBbF8ocFIJH8AIzz0A9x4UKC-DqESQFoyCWshgKyOZgnEDB1VVgXujta0rOSfXx95D134PmPtyH7PHpoGE7ZBLbgyTwjptR3p1pBERy0MX99D9lH9_kr9Dt1tq |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2015.7298682 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1467369640 9781467369640 |
EISSN | 1063-6919 |
EndPage | 823 |
ExternalDocumentID | 7298682 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-4a9342cfa72c1caa1cca4a4c3f2b2f38a74ad23f8b7304a6401a4bbf1c7668db3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Sep 05 03:43:17 EDT 2025 Wed Aug 27 02:49:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-4a9342cfa72c1caa1cca4a4c3f2b2f38a74ad23f8b7304a6401a4bbf1c7668db3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1770328968 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1770328968 ieee_primary_7298682 |
PublicationCentury | 2000 |
PublicationDate | 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030089920 ssj0023720 ssj0003211698 |
Score | 2.5799558 |
Snippet | Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 815 |
SubjectTerms | Accuracy Artificial neural networks Clustering Computer vision Conferences Euclidean geometry Face Face recognition Pattern recognition Principal component analysis Similarity Tasks Training |
Title | FaceNet: A unified embedding for face recognition and clustering |
URI | https://ieeexplore.ieee.org/document/7298682 https://www.proquest.com/docview/1770328968 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7Vkyff-CaCR7c22WwenpRiKUKLiBVvJclOQNSt2N2Lv97JdreCevC2hGQfM7OTbzIvQs6CdcHmGUuk1CYRIH1ihIIkM9IyyLw3taE4GsvhRNw-ZU8dcr7MhQGAOvgMuvGy9uXnM1_Fo7ILBIJaalS4Kyhmi1ytVnbSXvRfNdAnauEULRtplh4FHrux1J5PmSbSMNN4OFnPXPQf7-5jkFfWbR7QdFr5pZ7rPWewTkbt2y5CTV66Vem6_vNHIcf_fs4G2fnO7qN3y31rk3Sg2CLrDRylzc8-x6G240M7tk2uBtbDGMpLek2r4jnEBfDmII93ooh_acAJdBmVNCuoLXLqX6tYjwHn7JDJ4OahP0yaHgzJM-_pMhHWpIL7YBX3zFvLkOPCCp8G7nhItVXC5jwN2qGqEFaiuWaFc4F5hdzPXbpLVotZAXuEKgXcIsBESmtUG8bpnCtAPjnPgtLZPtmONJq-L8psTBvy7JPTlgtTFP3oz7AFzKr5lCkVqwEaqQ_-XnpI1iJbF5FdR2S1_KjgGDFE6U5q4fkC6kzBQA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQHNoT5VEB5eFKPZLdteP4wQmEWC2UXaFqF-0tsp2xhFqyVUku_HrG2WSRKAdukWXnMTMZf-N5EfIjWBdskbFESm0SAdInRihIMiMtg8x70xiK44kczcTNPJuvkdNVLgwANMFn0IuXjS-_WPg6HpX1EQhqqVHhbmRoVehltlYnPekgerBa8BP1cIq2jTQrnwKP_Vga36dME2mYaX2cbGD6l_d3v2KYV9ZrH9H2WvlPQTe7znCTjLv3XQab_O7Vlev55zelHD_6QV_I7mt-H71b7VxbZA3KbbLZAlLa_u5PONT1fOjGdsj50HqYQHVGL2hdPoS4AB4dFPFOFBEwDTiBruKSFiW1ZUH9nzpWZMA5u2Q2vJpejpK2C0PywAe6SoQ1qeA-WMU989Yy5LmwwqeBOx5SbZWwBU-DdqgshJVosFnhXGBeIf8Ll34l6-WihD1ClQJuEWIipTXyzzhdcAXIJ-dZUDrbJzuRRvnfZaGNvCXPPvnecSFH4Y8eDVvCon7KmVKxHqCR-uD9pSfk02g6vs1vryc_v5HPkcXLOK9Dsl79q-EIEUXljhtBegFHn8ST |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=FaceNet%3A+A+unified+embedding+for+face+recognition+and+clustering&rft.au=Schroff%2C+Florian&rft.au=Kalenichenko%2C+Dmitry&rft.au=Philbin%2C+James&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=815&rft.epage=823&rft_id=info:doi/10.1109%2FCVPR.2015.7298682&rft.externalDocID=7298682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |