Correlation of Grade Prediction Performance with Characteristics of Lesson Subject

Learning analytics is valuable sources of understanding students' behavior and giving feedback to them so that we can improve their learning activities. Analyzing comment data written by students after each lesson helps to grasp their learning attitudes and situations. They can be a powerful so...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Advanced Learning Technologies) pp. 247 - 249
Main Authors Sorour, Shaymaa E., Jingyi Luo, Goda, Kazumasa, Mine, Tsunenori
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2015
Subjects
Online AccessGet full text
ISSN2161-3761
DOI10.1109/ICALT.2015.24

Cover

Abstract Learning analytics is valuable sources of understanding students' behavior and giving feedback to them so that we can improve their learning activities. Analyzing comment data written by students after each lesson helps to grasp their learning attitudes and situations. They can be a powerful source of data for all forms of assessment. In the current study, we break down student comments into different topics by employing two topic models: Probabilistic Latent Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA), to discover the topics that help to predict final student grades as their performance. The objectives of this paper are twofold: First, determine how the three time-series items: P-, C- and N-comments and the difficulty of a subject affect the prediction results of final student grades. Second, evaluate the reliability of predicting student grades by considering the differences between prediction results of two consecutive lessons. The results obtained can help to understand student behavior during the period of the semester, grasp prediction error occurred in each lesson, and achieve further improvement of the student grade prediction.
AbstractList Learning analytics is valuable sources of understanding students' behavior and giving feedback to them so that we can improve their learning activities. Analyzing comment data written by students after each lesson helps to grasp their learning attitudes and situations. They can be a powerful source of data for all forms of assessment. In the current study, we break down student comments into different topics by employing two topic models: Probabilistic Latent Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA), to discover the topics that help to predict final student grades as their performance. The objectives of this paper are twofold: First, determine how the three time-series items: P-, C- and N-comments and the difficulty of a subject affect the prediction results of final student grades. Second, evaluate the reliability of predicting student grades by considering the differences between prediction results of two consecutive lessons. The results obtained can help to understand student behavior during the period of the semester, grasp prediction error occurred in each lesson, and achieve further improvement of the student grade prediction.
Author Mine, Tsunenori
Sorour, Shaymaa E.
Jingyi Luo
Goda, Kazumasa
Author_xml – sequence: 1
  givenname: Shaymaa E.
  surname: Sorour
  fullname: Sorour, Shaymaa E.
  organization: Fac. of Specific Educ., Kafr Elsheik Univ., KafrElsheikh, Egypt
– sequence: 2
  surname: Jingyi Luo
  fullname: Jingyi Luo
  organization: Inf. Sci. & Electr. Eng., Fukuoka, Japan
– sequence: 3
  givenname: Kazumasa
  surname: Goda
  fullname: Goda, Kazumasa
  organization: Kyushu Inst. of Inf. Sci., Fukuoka, Japan
– sequence: 4
  givenname: Tsunenori
  surname: Mine
  fullname: Mine, Tsunenori
  organization: Fac. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka, Japan
BookMark eNotjk1LAzEURSNUsNZZunIzf2BqXr5nKYO2woBF67pkkhcaaWckiYj_XquuLlzOPdxLMhunEQm5BroEoO3tY3fXb5eMglwycUaqVhsQSnPNuaAzMmegoOFawQWpco4DFUZLYFrMyXM3pYQHW-I01lOoV8l6rDcJfXS_3QZTmNLRjg7rz1j2dbe3ybqCKeYSXT6Nesz5B335GN7QlStyHuwhY_WfC_L6cL_t1k3_tDo9bSKjpjRCcB9kGwyTglIQ6AY-KOFap7yyRpvWa-GAOuMV04BcusC0MRyMbwcf-ILc_HkjIu7eUzza9LXTTEkOin8DK4xR0Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICALT.2015.24
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISBN 9781467373340
1467373346
EndPage 249
ExternalDocumentID 7265316
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i208t-443df59f82540014ecb3b64c9c6d6a8789d74c10c8d6271e35cf2788318d9bdf3
IEDL.DBID RIE
ISSN 2161-3761
IngestDate Wed Aug 27 02:39:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-443df59f82540014ecb3b64c9c6d6a8789d74c10c8d6271e35cf2788318d9bdf3
PageCount 3
ParticipantIDs ieee_primary_7265316
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (IEEE International Conference on Advanced Learning Technologies)
PublicationTitleAbbrev icalt
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048751274
ssj0000740298
Score 1.6082737
Snippet Learning analytics is valuable sources of understanding students' behavior and giving feedback to them so that we can improve their learning activities....
SourceID ieee
SourceType Publisher
StartPage 247
SubjectTerms Accuracy
Analytical models
Correlation
Education
Free-style comment
Learning Activity
Predictive models
Programming
Reliability
Student Grade Prediction
Topic Models
Title Correlation of Grade Prediction Performance with Characteristics of Lesson Subject
URI https://ieeexplore.ieee.org/document/7265316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JawIxGA3qqacuWrozhx4740wm61lqpdQiRcGbZIVS0CLjxV_ffJlR29JDb0OYQEjCt-V77yF0j1WhpMM0zRWzIUFRNBXU5qk3zHNtrCWR7Hn8ykYz8jyn8xZ62GNhnHOx-cxl8Bnf8u3KbKBU1ueYhSvD2qjNBauxWru7A3F3gZtQJlphToBdHLTlCiixhHT9QLHZB66BKTR20Qyw7t-EVaJfGR6j8W5FdTvJR7apdGa2v8ga_7vkE9Q7IPiSyd43naKWW56BQnPTzdFFbwOQ5agb4ZKVT57WysIUeLeJY5MDoiCBYm0y-EntDJNegpkMvwbjA9WcHpoNH6eDUdroK6TvOBdVSkhpPZUekkRIlZzRpWbESMMsU4ILaTkxRW6EZZgXrqTG45AyBzNgpba-PEed5WrpLlBiCmlDpACYLkN4rqVXvJQC9P4E04xfoi7szeKzptBYNNty9ffwNTqCo6m7Ym9Qp1pv3G3w_ZW-i4f-BTxSq74
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPejJRyu-3YNHd7uPPDbnolZtS5EWeiubF4jQStle_PVmsttWxYO3JWwgJMNkZjLf9wHcpkVSCJPSMC6YdglKQcOc6ji0ilkuldbEkz0Phqw3Ic9TOm3A3QYLY4zxzWcmwk__lq8XaoWlsg5PmTMZtgO7lBBCK7TW2now8k7SOpjxfpgT5BdHdbkEiywuYd-SbHaQbWCMrV00QrT7N2kVf7M8HMBgvaaqoeQ9WpUyUp-_6Br_u-hDaG8xfMFoczsdQcPMj1Gjue7naMFrF4U5qla4YGGDx2WhcQq-3Pix0RZTEGC5Nuj-JHfGSX3nKN2vzv1gPacNk4f7cbcX1goL4Vsa52VISKYtFRbTREyWjJKZZEQJxTQrcp4LzYlKYpVrlvLEZFTZ1CXNzhFoIbXNTqA5X8zNKQQqEdrFCojqUoTHUtiCZyJHxb-cScbPoIV7M_uoSDRm9bac_z18A3u98aA_6z8NXy5gH4-pqntcQrNcrsyViwRKee0N4AttL68F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Advanced+Learning+Technologies%29&rft.atitle=Correlation+of+Grade+Prediction+Performance+with+Characteristics+of+Lesson+Subject&rft.au=Sorour%2C+Shaymaa+E.&rft.au=Jingyi+Luo&rft.au=Goda%2C+Kazumasa&rft.au=Mine%2C+Tsunenori&rft.date=2015-07-01&rft.pub=IEEE&rft.issn=2161-3761&rft.spage=247&rft.epage=249&rft_id=info:doi/10.1109%2FICALT.2015.24&rft.externalDocID=7265316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3761&client=summon