Automatic object segmentation using perceptual grouping of regions with contextual constraints

Image segmentation is still considered a very challenging subject despite years of research effort poured into the field. The problem is exacerbated when there is need for specific object detection. Since objects can be visually non-homogeneous, techniques that attempt to segment images into visuall...

Full description

Saved in:
Bibliographic Details
Published inInternational Workshops on Image Processing Theory, Tools, and Applications pp. 530 - 534
Main Authors Zand, Mohsen, Doraisamy, Shyamala, Halin, Alfian Abdul, Mustaffa, Mas Rina
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.11.2015
Subjects
Online AccessGet full text
ISBN1479986364
9781479986361
ISSN2154-512X
DOI10.1109/IPTA.2015.7367203

Cover

Abstract Image segmentation is still considered a very challenging subject despite years of research effort poured into the field. The problem is exacerbated when there is need for specific object detection. Since objects can be visually non-homogeneous, techniques that attempt to segment images into visually uniform regions using only the bottom-up cues, tend to fail. We propose a novel two-step model that incorporates both bottom-up information and top-down object constraints. Firstly, a set of uniform regions are generated using an extension of contour detection, seeded region growing, and graph-based methods. The second step applies co-occurrence constraints on the image regions in order to perceptually group regions into objects. This unsupervised segmentation process models each object using higher-level knowledge in the form of visual co-occurrences of its constituent parts. Experiments on the horse and ImageCLEF databases show that the proposed technique performs comparably well with existing state-of-the-art techniques.
AbstractList Image segmentation is still considered a very challenging subject despite years of research effort poured into the field. The problem is exacerbated when there is need for specific object detection. Since objects can be visually non-homogeneous, techniques that attempt to segment images into visually uniform regions using only the bottom-up cues, tend to fail. We propose a novel two-step model that incorporates both bottom-up information and top-down object constraints. Firstly, a set of uniform regions are generated using an extension of contour detection, seeded region growing, and graph-based methods. The second step applies co-occurrence constraints on the image regions in order to perceptually group regions into objects. This unsupervised segmentation process models each object using higher-level knowledge in the form of visual co-occurrences of its constituent parts. Experiments on the horse and ImageCLEF databases show that the proposed technique performs comparably well with existing state-of-the-art techniques.
Author Doraisamy, Shyamala
Zand, Mohsen
Mustaffa, Mas Rina
Halin, Alfian Abdul
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Zand
  fullname: Zand, Mohsen
  email: m.mohsen.zand@ieee.org
  organization: Dept. of Multimedia, Univ. Putra Malaysia, Serdang, Malaysia
– sequence: 2
  givenname: Shyamala
  surname: Doraisamy
  fullname: Doraisamy, Shyamala
  email: shyamala@upm.edu.my
  organization: Dept. of Multimedia, Univ. Putra Malaysia, Serdang, Malaysia
– sequence: 3
  givenname: Alfian Abdul
  surname: Halin
  fullname: Halin, Alfian Abdul
  email: alfian@ieee.org
  organization: Dept. of Multimedia, Univ. Putra Malaysia, Serdang, Malaysia
– sequence: 4
  givenname: Mas Rina
  surname: Mustaffa
  fullname: Mustaffa, Mas Rina
  email: masrina@upm.edu.my
  organization: Dept. of Multimedia, Univ. Putra Malaysia, Serdang, Malaysia
BookMark eNo1kEtLw0AUhccX2Nb-AHGTpZvUeSTzWBbxUSjoooIrw2R6E6ckMzEzQf33RlvhwDmc-3EXZ4pOnXeA0CXBC0Kwulk9b5YLikm-EIwLitkRmishSSaUkpwJeYwmlORZmhP6eoKm_weenaN5CDuMMaGSUykn6G05RN_qaE3iyx2YmASoW3BxrLxLhmBdnXTQG-jioJuk7v3Q_Xa-SnqoRyYknza-J8a7CF9_zBhD7LV1MVygs0o3AeYHn6GX-7vN7WO6fnpY3S7XqaVYxpTlUm5NXmkqRie6IkCZykTGOGdbIjOmeCUZCA3KUKNzwNxwudUlq2hZKjZD1_u_Xe8_BgixaG0w0DTagR9CQSRWnFI2aoau9qgFgKLrbav77-KwJPsBRVto9w
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/IPTA.2015.7367203
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781479986378
1479986372
EISSN 2154-512X
EndPage 534
ExternalDocumentID 7367203
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-3588dc5fa278dc1af1e2394743663d184396f83e7ae9c2ca5e06c68dab3f2bb93
IEDL.DBID RIE
ISBN 1479986364
9781479986361
IngestDate Fri Jul 11 07:53:17 EDT 2025
Wed Aug 27 02:56:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-3588dc5fa278dc1af1e2394743663d184396f83e7ae9c2ca5e06c68dab3f2bb93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1809622322
PQPubID 23500
PageCount 5
ParticipantIDs ieee_primary_7367203
proquest_miscellaneous_1809622322
PublicationCentury 2000
PublicationDate 20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 20151101
  day: 01
PublicationDecade 2010
PublicationTitle International Workshops on Image Processing Theory, Tools, and Applications
PublicationTitleAbbrev IPTA
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001286288
Score 1.584505
Snippet Image segmentation is still considered a very challenging subject despite years of research effort poured into the field. The problem is exacerbated when there...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 530
SubjectTerms Automatic image segmentation
Conferences
Contextual relationships
Feature extraction
Graph-based segmentation
Image color analysis
Image edge detection
Image segmentation
Object segmentation
Segmentation
Segments
Semantics
Shape
State of the art
Visual
Visualization
Title Automatic object segmentation using perceptual grouping of regions with contextual constraints
URI https://ieeexplore.ieee.org/document/7367203
https://www.proquest.com/docview/1809622322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWkR5yUiMJG2S-pGxQlSAVNShlToR2Y5dISCpSLLw6_ElbkHAwJSHkijxXXznu_vuQ-hKBTQMtSCe5pLCAoV6QgShZ42LIkRLa9Ig3jF7pHfL8cOKrFroeoeF0VrXxWfah906l5_mqoJQ2ZBFFLKGbdRmnDZYrW_xFA7MuTV2i9k1BI3oeNvSyR0HLqsZjOLh_XwxgcIu4ruHOnaVX1NybWemXTTbvmFTXvLiV6X01ceP5o3__YR91P9C9OH5zlYdoJbODlHXuaDY_eBFDz1NqjKvu7jiXEKIBhd6_ebwSRmGKvk13jTFMJV4xTUoBM7lBgPHg9VhDKFdDCXwdt6HaxS4oMBEURZ9tJzeLm7uPEfB4D2HI156EeE8VcSIkNltIEyggUvduh3WU0mBKyamhkeaCR2rUAmiR1RRngoZmVDKODpCnSzP9DHCnFshcGWMpPE4NUoIw1LorsYYs05aOkA9GK5k03TZSNxIDdDlViCJ1XxIZ4hM51WRQOcxq2h2Rjr5-9ZTtAcSbpCDZ6hTvlf63LoQpbyodecTAHzEaA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HODEYyDGM0gc6bY-kqZHhEDjMbTDkDhRJWkyIaCdaHvh1xO3GSDgwKkPtVUbu7Fj-_MHcKJ8FgRaUE9zyXCBwjwh_MCzxkVRqqU1aRjvGN2x4X10_UAfFuD0EwujtW6Kz3QPd5tcflaoGkNl_ThkmDVchGUaRRFt0VrfIiocuXMb9FZsVxEsZNG8qZM79l1e0x8k_avx5AxLu2jPPdbxq_yalBtLc7kGo_k7tgUmz726kj31_qN9438_Yh22vjB9ZPxprTZgQeebsOacUOJ-8bIDj2d1VTR9XEkhMUhDSj19dQilnGCd_JTM2nKYWryQBhaC5wpDkOXBajHB4C7BIng78-M1Cp1Q5KKoyi24v7yYnA89R8LgPQUDXnkh5TxT1IggtltfGF8jm7p1PKyvkiFbTMIMD3UsdKICJageMMV4JmRoAimTcBuW8iLXO0A4t0LgyhjJkigzSggTZ9hfLY5j66ZlXejgcKWzts9G6kaqC8dzgaRW9zGhIXJd1GWKvcesqtk5affvW49gZTgZ3aa3V3c3e7CK0m5xhPuwVL3V-sA6FJU8bPToA3P5x7U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Workshops+on+Image+Processing+Theory%2C+Tools%2C+and+Applications&rft.atitle=Automatic+object+segmentation+using+perceptual+grouping+of+regions+with+contextual+constraints&rft.au=Zand%2C+Mohsen&rft.au=Doraisamy%2C+Shyamala&rft.au=Halin%2C+Alfian+Abdul&rft.au=Mustaffa%2C+Mas+Rina&rft.date=2015-11-01&rft.pub=IEEE&rft.isbn=1479986364&rft.eissn=2154-512X&rft.spage=530&rft.epage=534&rft_id=info:doi/10.1109%2FIPTA.2015.7367203&rft.externalDocID=7367203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479986361/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479986361/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479986361/sc.gif&client=summon&freeimage=true