Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation
In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras deliver dense, high quality depth measurements but are limited in their lateral resolution. To overcome this limitation we formulate a convex o...
Saved in:
| Published in | 2013 IEEE International Conference on Computer Vision pp. 993 - 1000 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
IEEE
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1550-5499 |
| DOI | 10.1109/ICCV.2013.127 |
Cover
| Abstract | In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras deliver dense, high quality depth measurements but are limited in their lateral resolution. To overcome this limitation we formulate a convex optimization problem using higher order regularization for depth image up sampling. In this optimization an an isotropic diffusion tensor, calculated from a high resolution intensity image, is used to guide the up sampling. We derive a numerical algorithm based on a primal-dual formulation that is efficiently parallelized and runs at multiple frames per second. We show that this novel up sampling clearly outperforms state of the art approaches in terms of speed and accuracy on the widely used Middlebury 2007 datasets. Furthermore, we introduce novel datasets with highly accurate ground truth, which, for the first time, enable to benchmark depth up sampling methods using real sensor data. |
|---|---|
| AbstractList | In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras deliver dense, high quality depth measurements but are limited in their lateral resolution. To overcome this limitation we formulate a convex optimization problem using higher order regularization for depth image up sampling. In this optimization an an isotropic diffusion tensor, calculated from a high resolution intensity image, is used to guide the up sampling. We derive a numerical algorithm based on a primal-dual formulation that is efficiently parallelized and runs at multiple frames per second. We show that this novel up sampling clearly outperforms state of the art approaches in terms of speed and accuracy on the widely used Middlebury 2007 datasets. Furthermore, we introduce novel datasets with highly accurate ground truth, which, for the first time, enable to benchmark depth up sampling methods using real sensor data. |
| Author | Reinbacher, Christian Ruether, Matthias Ferstl, David Ranftl, Rene Bischof, Horst |
| Author_xml | – sequence: 1 givenname: David surname: Ferstl fullname: Ferstl, David email: ferstl@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 2 givenname: Christian surname: Reinbacher fullname: Reinbacher, Christian email: reinbacher@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 3 givenname: Rene surname: Ranftl fullname: Ranftl, Rene email: ranftl@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 4 givenname: Matthias surname: Ruether fullname: Ruether, Matthias email: ruether@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 5 givenname: Horst surname: Bischof fullname: Bischof, Horst email: bischof@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria |
| BookMark | eNotjj1PwzAYhI1UJNrCyMSSkSXF3x9jFaBUVGJpu0aO87YYJXaIkwF-Pa3Kcjfcc6eboUmIARC6J3hBCDZP66LYLygmbEGoukIzwpUxVHNMJ2hKhMC54MbcoFlKXxizUySn6H3d2iNkq9HXUGfP0A2f2a5Ltu0aH47ZLp11GXyKQx8777JtHGyTrSBAbxv_eyrtbe_t4GO4RdcH2yS4-_c52r2-bIu3fPOxWhfLTe4p1kPOeK0rVwtBDxQ7dT5FOKuNMNZoVYFxwDEhTpDqwLV0ymnOQEpCNWa0qtkcPV52uz5-j5CGsvXJQdPYAHFMJZHSaE0pVif04YJ6ACi73re2_ymlEoQyxv4A_qVayw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICCV.2013.127 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1479928402 9781479928408 |
| EndPage | 1000 |
| ExternalDocumentID | 6751233 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-34d8bcd552f20c75499143d959a987be9ce4011c51bf486c7c843e66128032bd3 |
| IEDL.DBID | RIE |
| ISSN | 1550-5499 |
| IngestDate | Thu Oct 02 11:21:10 EDT 2025 Wed Aug 27 04:21:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-34d8bcd552f20c75499143d959a987be9ce4011c51bf486c7c843e66128032bd3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1669882207 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6751233 proquest_miscellaneous_1669882207 |
| PublicationCentury | 2000 |
| PublicationDate | 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | iccv |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssj0001967680 |
| Score | 2.6074035 |
| Snippet | In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 993 |
| SubjectTerms | Anisotropic magnetoresistance anisotropic tensor Anisotropy Cameras Computer vision Depth measurement depth sensing Energy resolution Mathematical analysis Optimization Sampling Spatial resolution superresolution Tensile stress Tensors total generalized variation upsampling |
| Title | Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation |
| URI | https://ieeexplore.ieee.org/document/6751233 https://www.proquest.com/docview/1669882207 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWkR5yUiMJM3TcUZUKBRUxNBW3aL4EYgQSdUkS389ZydtJWBgiaJIlqyzc_ed_d19CN0Q6VBicctgnIaGR4UwGKGK08Bk4sehI7RKxPSVPM2956W_bKHbXS2MlFKTz6SpXvVdvsh5pY7KhgBuwdG6bdQOKKlrtfbnKSEB5GxtvTCEfa3yqBC4oXKgfX_N4WQ0WihSl2tqMRmtqvLLFev4Mu6i6XZmNa3k06xKZvLNj6aN_536IervK_nw2y5GHaGWzI5Rt4GeuPmxix56mXyBY8GPVSrg-71clR94vipixTfP3rEmFuC7LC3ycp2vUo5nOaB23DStTjcwaAFZt17mPpqPH2ajJ6PRWTBSx6Kl4XqCMi5830kciwfKWoCiROiHcUgDJkMuIQuzuW-zxKOEB5x6roTArpStHCbcE9TJ8kyeIqy7zQSeFXsJPCGZY4nNARI6toiVhPgA9ZRtolXdSiNqzDJA11vrR7C91Z1FnMm8KiKbkBCSAMcKzv4eeo4O1FLWDJML1CnXlbwEnFCyK71BvgEFo7kE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGWDiVUR5GomRlDycxBlRobRAEUNbdYviRyBCJBVNlv56zm5KJWBgiaJIlqyzc_ed_d19AJeBcllgC9vigkUWZVJaPGCa08BV6ieRK41KxOA56I3ow8SfrMHVdy2MUsqQz1Rbv5q7fFmISh-VXSO4RUfrrcOGTyn1F9VaqxOVKEDsbC_9MAZ-o_OoMbils6BVh83rfqcz1rQur23kZIyuyi9nbCJMdxsGy7ktiCXv7arkbTH_0bbxv5Pfgeaqlo-8fEepXVhT-R5s1-CT1L_2bB8e-x_oWsh9lUn8fqum5RsZTWeJZpznr8RQC8hNns2K8rOYZoIMC8TtpG5bnc1x0BjzbrPQTRh174adnlUrLViZa7PS8qhkXEjfd1PXFqG2FuIoGflRErGQq0gozMMc4Ts8pSwQoWDUUxjatbaVy6V3AI28yNUhENNvJqR2QlN8YjrHU0cgKHQdmWgR8Rbsa9vE00Uzjbg2SwsultaPcYPrW4skV0U1i50giDANcO3w6O-h57DZGw6e4qf-8-MxbOllXfBNTqBRflbqFFFDyc_MZvkC52S8UQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Image+Guided+Depth+Upsampling+Using+Anisotropic+Total+Generalized+Variation&rft.au=Ferstl%2C+David&rft.au=Reinbacher%2C+Christian&rft.au=Ranftl%2C+Rene&rft.au=Ruether%2C+Matthias&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=993&rft.epage=1000&rft_id=info:doi/10.1109%2FICCV.2013.127&rft.externalDocID=6751233 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |