Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation

In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras deliver dense, high quality depth measurements but are limited in their lateral resolution. To overcome this limitation we formulate a convex o...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 993 - 1000
Main Authors Ferstl, David, Reinbacher, Christian, Ranftl, Rene, Ruether, Matthias, Bischof, Horst
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.127

Cover

Abstract In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras deliver dense, high quality depth measurements but are limited in their lateral resolution. To overcome this limitation we formulate a convex optimization problem using higher order regularization for depth image up sampling. In this optimization an an isotropic diffusion tensor, calculated from a high resolution intensity image, is used to guide the up sampling. We derive a numerical algorithm based on a primal-dual formulation that is efficiently parallelized and runs at multiple frames per second. We show that this novel up sampling clearly outperforms state of the art approaches in terms of speed and accuracy on the widely used Middlebury 2007 datasets. Furthermore, we introduce novel datasets with highly accurate ground truth, which, for the first time, enable to benchmark depth up sampling methods using real sensor data.
AbstractList In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras deliver dense, high quality depth measurements but are limited in their lateral resolution. To overcome this limitation we formulate a convex optimization problem using higher order regularization for depth image up sampling. In this optimization an an isotropic diffusion tensor, calculated from a high resolution intensity image, is used to guide the up sampling. We derive a numerical algorithm based on a primal-dual formulation that is efficiently parallelized and runs at multiple frames per second. We show that this novel up sampling clearly outperforms state of the art approaches in terms of speed and accuracy on the widely used Middlebury 2007 datasets. Furthermore, we introduce novel datasets with highly accurate ground truth, which, for the first time, enable to benchmark depth up sampling methods using real sensor data.
Author Reinbacher, Christian
Ruether, Matthias
Ferstl, David
Ranftl, Rene
Bischof, Horst
Author_xml – sequence: 1
  givenname: David
  surname: Ferstl
  fullname: Ferstl, David
  email: ferstl@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 2
  givenname: Christian
  surname: Reinbacher
  fullname: Reinbacher, Christian
  email: reinbacher@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 3
  givenname: Rene
  surname: Ranftl
  fullname: Ranftl, Rene
  email: ranftl@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 4
  givenname: Matthias
  surname: Ruether
  fullname: Ruether, Matthias
  email: ruether@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 5
  givenname: Horst
  surname: Bischof
  fullname: Bischof, Horst
  email: bischof@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
BookMark eNotjj1PwzAYhI1UJNrCyMSSkSXF3x9jFaBUVGJpu0aO87YYJXaIkwF-Pa3Kcjfcc6eboUmIARC6J3hBCDZP66LYLygmbEGoukIzwpUxVHNMJ2hKhMC54MbcoFlKXxizUySn6H3d2iNkq9HXUGfP0A2f2a5Ltu0aH47ZLp11GXyKQx8777JtHGyTrSBAbxv_eyrtbe_t4GO4RdcH2yS4-_c52r2-bIu3fPOxWhfLTe4p1kPOeK0rVwtBDxQ7dT5FOKuNMNZoVYFxwDEhTpDqwLV0ymnOQEpCNWa0qtkcPV52uz5-j5CGsvXJQdPYAHFMJZHSaE0pVif04YJ6ACi73re2_ymlEoQyxv4A_qVayw
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2013.127
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 1000
ExternalDocumentID 6751233
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-34d8bcd552f20c75499143d959a987be9ce4011c51bf486c7c843e66128032bd3
IEDL.DBID RIE
ISSN 1550-5499
IngestDate Thu Oct 02 11:21:10 EDT 2025
Wed Aug 27 04:21:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-34d8bcd552f20c75499143d959a987be9ce4011c51bf486c7c843e66128032bd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1669882207
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6751233
proquest_miscellaneous_1669882207
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.6074035
Snippet In this work we present a novel method for the challenging problem of depth image up sampling. Modern depth cameras such as Kinect or Time-of-Flight cameras...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 993
SubjectTerms Anisotropic magnetoresistance
anisotropic tensor
Anisotropy
Cameras
Computer vision
Depth measurement
depth sensing
Energy resolution
Mathematical analysis
Optimization
Sampling
Spatial resolution
superresolution
Tensile stress
Tensors
total generalized variation
upsampling
Title Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation
URI https://ieeexplore.ieee.org/document/6751233
https://www.proquest.com/docview/1669882207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWkR5yUiMJM3TcUZUKBRUxNBW3aL4EYgQSdUkS389ZydtJWBgiaJIlqyzc_ed_d19CN0Q6VBicctgnIaGR4UwGKGK08Bk4sehI7RKxPSVPM2956W_bKHbXS2MlFKTz6SpXvVdvsh5pY7KhgBuwdG6bdQOKKlrtfbnKSEB5GxtvTCEfa3yqBC4oXKgfX_N4WQ0WihSl2tqMRmtqvLLFev4Mu6i6XZmNa3k06xKZvLNj6aN_536IervK_nw2y5GHaGWzI5Rt4GeuPmxix56mXyBY8GPVSrg-71clR94vipixTfP3rEmFuC7LC3ycp2vUo5nOaB23DStTjcwaAFZt17mPpqPH2ajJ6PRWTBSx6Kl4XqCMi5830kciwfKWoCiROiHcUgDJkMuIQuzuW-zxKOEB5x6roTArpStHCbcE9TJ8kyeIqy7zQSeFXsJPCGZY4nNARI6toiVhPgA9ZRtolXdSiNqzDJA11vrR7C91Z1FnMm8KiKbkBCSAMcKzv4eeo4O1FLWDJML1CnXlbwEnFCyK71BvgEFo7kE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGWDiVUR5GomRlDycxBlRobRAEUNbdYviRyBCJBVNlv56zm5KJWBgiaJIlqyzc_ed_d19AJeBcllgC9vigkUWZVJaPGCa08BV6ieRK41KxOA56I3ow8SfrMHVdy2MUsqQz1Rbv5q7fFmISh-VXSO4RUfrrcOGTyn1F9VaqxOVKEDsbC_9MAZ-o_OoMbils6BVh83rfqcz1rQur23kZIyuyi9nbCJMdxsGy7ktiCXv7arkbTH_0bbxv5Pfgeaqlo-8fEepXVhT-R5s1-CT1L_2bB8e-x_oWsh9lUn8fqum5RsZTWeJZpznr8RQC8hNns2K8rOYZoIMC8TtpG5bnc1x0BjzbrPQTRh174adnlUrLViZa7PS8qhkXEjfd1PXFqG2FuIoGflRErGQq0gozMMc4Ts8pSwQoWDUUxjatbaVy6V3AI28yNUhENNvJqR2QlN8YjrHU0cgKHQdmWgR8Rbsa9vE00Uzjbg2SwsultaPcYPrW4skV0U1i50giDANcO3w6O-h57DZGw6e4qf-8-MxbOllXfBNTqBRflbqFFFDyc_MZvkC52S8UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Image+Guided+Depth+Upsampling+Using+Anisotropic+Total+Generalized+Variation&rft.au=Ferstl%2C+David&rft.au=Reinbacher%2C+Christian&rft.au=Ranftl%2C+Rene&rft.au=Ruether%2C+Matthias&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=993&rft.epage=1000&rft_id=info:doi/10.1109%2FICCV.2013.127&rft.externalDocID=6751233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon