A gradient-based dissipative continuous-time algorithm for distributed optimization

This paper is concerned with solving distributed optimization problem by multi-agent systems with gradient-based dissipative dynamics over undirected graph. The optimization objective function is a sum of local cost functions associated to the individual agents. A novel gradient-based dissipative co...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 7908 - 7912
Main Authors Yu, Weiyong, Yi, Peng, Hong, Yiguang
Format Conference Proceeding Journal Article
LanguageEnglish
Published TCCT 01.07.2016
Subjects
Online AccessGet full text
ISSN1934-1768
DOI10.1109/ChiCC.2016.7554612

Cover

Abstract This paper is concerned with solving distributed optimization problem by multi-agent systems with gradient-based dissipative dynamics over undirected graph. The optimization objective function is a sum of local cost functions associated to the individual agents. A novel gradient-based dissipative continuous-time algorithm is proposed to solve the distributed optimization problem, which extends the well-known heavy ball method to distributed optimization. Suppose the local cost functions being strongly convex with locally Lipschitz gradients, by defining suitable Lyapunov functions, then we show that the agents can find the same optimal solution by the proposed algorithm with exponential convergence rate. Specially, the choice of parameters in our algorithm is independent of the communication topology, demonstrating significant advantage over existing algorithms.
AbstractList This paper is concerned with solving distributed optimization problem by multi-agent systems with gradient-based dissipative dynamics over undirected graph. The optimization objective function is a sum of local cost functions associated to the individual agents. A novel gradient-based dissipative continuous-time algorithm is proposed to solve the distributed optimization problem, which extends the well-known heavy ball method to distributed optimization. Suppose the local cost functions being strongly convex with locally Lipschitz gradients, by defining suitable Lyapunov functions, then we show that the agents can find the same optimal solution by the proposed algorithm with exponential convergence rate. Specially, the choice of parameters in our algorithm is independent of the communication topology, demonstrating significant advantage over existing algorithms.
Author Weiyong Yu
Peng Yi
Yiguang Hong
Author_xml – sequence: 1
  givenname: Weiyong
  surname: Yu
  fullname: Yu, Weiyong
– sequence: 2
  givenname: Peng
  surname: Yi
  fullname: Yi, Peng
– sequence: 3
  givenname: Yiguang
  surname: Hong
  fullname: Hong, Yiguang
BookMark eNotkMFOwzAQRA0Cibb0B-CSI5eU3Th27GMVUUCqxAE4R26yaY2SOMQOEnw9qdrTSqM3o9mZs6vOdcTYHcIKEfRjfrB5vkoA5SoTIpWYXLClzpRWCoXkGuGSzVDzNMZMqhs29_4LQIJGPmPv62g_mMpSF-Kd8VRFlfXe9ibYH4pK1wXbjW70cbAtRabZu8GGQxvVbjiSYbC7MUwu10-A_Ztsrrtl17VpPC3Pd8E-N08f-Uu8fXt-zdfb2CagQowalDKoNKpaJiBqCTylTBlVlQISme6UkCkQ8SQjXSaiRIJMceBHbfpswR5Ouf3gvkfyoWitL6lpTEdT5QIVF2JK5nxC70-oJaKiH2xrht_iPBf_B7xAYE0
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SP
8FD
L7M
DOI 10.1109/ChiCC.2016.7554612
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
Consulter via IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9789881563910
9881563917
EISSN 1934-1768
EndPage 7912
ExternalDocumentID 7554612
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
7SP
8FD
L7M
ID FETCH-LOGICAL-i208t-19088a18918f6205f6034e78a8dc50264b85640ee327e9c25c1e0783030ee3563
IEDL.DBID RIE
IngestDate Thu Oct 02 08:34:51 EDT 2025
Wed Aug 27 01:51:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-19088a18918f6205f6034e78a8dc50264b85640ee327e9c25c1e0783030ee3563
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1835562033
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1835562033
ieee_primary_7554612
PublicationCentury 2000
PublicationDate 20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 20160701
  day: 01
PublicationDecade 2010
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev ChiCC
PublicationYear 2016
Publisher TCCT
Publisher_xml – name: TCCT
SSID ssj0060913
Score 1.9940416
Snippet This paper is concerned with solving distributed optimization problem by multi-agent systems with gradient-based dissipative dynamics over undirected graph....
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 7908
SubjectTerms Algorithm design and analysis
Algorithms
Conferences
Continuous-time optimization algorithms
Convergence
Cost function
Dissipation
dissipativity
distributed optimization
Dynamical systems
gradient-based algorithms
heavy ball method
Heuristic algorithms
Lyapunov functions
Machine learning algorithms
Multi-agent systems
Optimization
Title A gradient-based dissipative continuous-time algorithm for distributed optimization
URI https://ieeexplore.ieee.org/document/7554612
https://www.proquest.com/docview/1835562033
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NQEH7UnvTi0op1I4JHk-Ylb8tRgkWEiqCF3kKWSRu0idTEg7_eN1mqqAdvIWTg5S0zk8z3zUfIZeqg0BFw05P6NDEK1FQiTs0wBAGJdBJWk8Sm9-J2xu7mfN4jVxsuDADU4DOw8LKu5SdFXOGvsrFESBVKCm9JJRquVud1Bfa37Egxtjf2l5nvI3JLWK1VK5_yy-fWgWSyS6bdEBr8yLNVlZEVf_zozvjfMe6R4Rdlz3jYBKN90oP8gOx86zY4II_XxmJdI7xKE4NXYmAxvoZUv4OBmPUsr4rqzUS9eSN8WRTrrFyuDJ3W4pONNJa2KrSXWbX0zSGZTW6e_Fuz1VQwM8dWpUkR1xRS5VGVCsfmqbBdBlKFKom5_h5jkeKC2QCuI8GLHR5TwEqf9gX6HhfuIennRQ5HxIgSZSfCYzHzXJayyJOe40SMhjykIFk6IgOcnuC1aZsRtDMzIhfdAgR6K2N9IsxBv12gvQvX6Zjtusd_m56QbVzRBi17SvrluoIznROU0Xm9GT4BDU-3aQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN40elAvPlpjfWLiUSiP3WU5GmJTtW1MbJPeCI-hJVowFTz4693hUY168EYIkyz7mBmY75uPkKvYRKEjYKpjy9NEDTBUwcNY9X3gENlmREuS2GjMB1N6P2OzFrlec2EAoASfgYaXZS0_ysICf5X1bIRUoaTwJqOUsoqt1fhdjh0uG1qM7vTcReK6iN3iWm1XC6j88rplKOnvklEziApB8qwVeaCFHz_6M_53lHuk80XaUx7X4WiftCA9IDvf-g22ydONMl-VGK9cxfAVKViOL0HV76Agaj1Ji6x4U1FxXvFf5tkqyRdLRSa2-GQljiWtMulnljWBs0Om_duJO1BrVQU1MXWRqwYim3xDOIaIuamzmOsWBVv4IgqZ_CKjgWCc6gCWaYMTmiw0AGt90hvIe4xbh2QjzVI4IkoQCT3iDg2pY9GYBo7tmGZADZ_5Btg07pI2To_3WjXO8OqZ6ZLLZgE8uZmxQuGnIN_Ok_6FyYRMt6zjv00vyNZgMhp6w7vxwwnZxtWtsLOnZCNfFXAmM4Q8OC83xifTArq2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=A+gradient-based+dissipative+continuous-time+algorithm+for+distributed+optimization&rft.au=Weiyong+Yu&rft.au=Peng+Yi&rft.au=Yiguang+Hong&rft.date=2016-07-01&rft.pub=TCCT&rft.eissn=1934-1768&rft.spage=7908&rft.epage=7912&rft_id=info:doi/10.1109%2FChiCC.2016.7554612&rft.externalDocID=7554612