Structured Forests for Fast Edge Detection
Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image pa...
Saved in:
Published in | 2013 IEEE International Conference on Computer Vision pp. 1841 - 1848 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-5499 |
DOI | 10.1109/ICCV.2013.231 |
Cover
Abstract | Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain measures may be evaluated. The result is an approach that obtains real time performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets. |
---|---|
AbstractList | Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain measures may be evaluated. The result is an approach that obtains real time performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets. |
Author | Dollar, Piotr Zitnick, C. Lawrence |
Author_xml | – sequence: 1 givenname: Piotr surname: Dollar fullname: Dollar, Piotr email: pdollar@microsoft.com – sequence: 2 givenname: C. Lawrence surname: Zitnick fullname: Zitnick, C. Lawrence email: larryz@microsoft.com |
BookMark | eNotjjtPwzAURo1UJNrCyMSSESGl3OtX7BGFFipVYuCxRo5zg4LapNjOwL9vpDJ9wzk6-hZs1g89MXaLsEIE-7gty68VBxQrLvCCLVAW1nIjgc_YHJWCXElrr9gixh8AMSE9Zw_vKYw-jYGabDMEiilm7RCyjYspWzfflD1TIp-6ob9ml63bR7r53yX73Kw_ytd89_ayLZ92ecfBpByNberacEm1sVx6lOSBuEdlvC8UWe2kacFKDYUHJbXW2EzAqQJq2TqxZPfn7jEMv-P0qDp00dN-73oaxlih1tZMaSwm9e6sdkRUHUN3cOGv0oVCIaw4AQnfTrs |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/ICCV.2013.231 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1479928402 9781479928408 |
EndPage | 1848 |
ExternalDocumentID | 6751339 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-189dbb824eb8924c14ec0e2c158cc75e96a48f094607c0546661dc75a570b4fa3 |
IEDL.DBID | RIE |
ISSN | 1550-5499 |
IngestDate | Fri Jul 11 03:49:12 EDT 2025 Wed Aug 27 04:21:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-189dbb824eb8924c14ec0e2c158cc75e96a48f094607c0546661dc75a570b4fa3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1669889217 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1669889217 ieee_primary_6751339 |
PublicationCentury | 2000 |
PublicationDate | 20131201 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | iccv |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 ssj0001967680 |
Score | 2.6025763 |
Snippet | Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1841 |
SubjectTerms | Algorithms Computer vision Decision trees Detectors Edge detection Image color analysis Image edge detection Image segmentation Learning realtime vision Segmentation State of the art structure learning Training Vegetation |
Title | Structured Forests for Fast Edge Detection |
URI | https://ieeexplore.ieee.org/document/6751339 https://www.proquest.com/docview/1669889217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bnnyauonziwo-iemSNk3b57kxhYmgk72VfIoIndj2xb_eS9ttoD74VlIKl1yT-93l7n4IXaWKCAeLsRA2wExzgqVlARZKhTFRmjDtAvqLBz5fsvtVtOqgm20tjDGmTj4zvnus7_L1WlUuVDYGcAsuVdpF3ThOm1qtXTwl5YCcyeYUBrNfszw6BI6dD7Trrzm-m0xeXFJX6AeOW65mVfl1FNf2ZdZHi41kTVrJu1-V0ldfP5o2_lf0fTTcVfJ5j1sbdYA6Jj9E_RZ6eu3GLgbo-qnuI1t9wqhj6yzKwgM4681EUXpT_Wq8W1PWWVv5EC1n0-fJHLc0CvgtIEmJaZJqKZOAGZmAt6UoM4qYQNEoUSqOTMoFSyy4eZzEChAcaI5qeCGimEhmRXiEevk6N8fIE1yExBhLmRTM2hBMm02pjUWiAMZpMUIDN_Xso-mUkbWzHqHLzeJm8Pe6KwmRm3VVZJTzNAGpaHzy96enaM9pqkkgOUM9WAxzDjCglBe1_r8BurSumQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECkb8rIkn48K23X6dEQIKxEQw3JrtdtcYk2Jse_HXO7sUSNSDt6ZNk9ntdufN7Jt5ADeRoFzDYsK5cghLfUoSxRzChXADKlLKUp3Qn0z94Zw9LLxFDe42tTBSSkM-kx19ac7y06Uodaqsi-AWQ6poB3Y9jCqCVbXWNqMS-Yid6XofRsdvdB41Bic6Ctp22OyOer0XTetyO45WlzO6Kr82Y-NhBg2YrG1bEUveO2WRdMTXj7aN_zX-AFrbWj7raeOlDqEmsyNoVODTqn7tvAm3z6aTbPmJd7VeZ17kFgJaa8Dzwuqnr9K6l4XhbWUtmA_6s96QVEIK5M2hYUHsMEqTJHSYTEKMt4TNpKDSEbYXChF4MvI5CxUGej4NBGI4_HZ2ig-4F9CEKe4eQz1bZvIELO5zl0qpbJZwppSLzk1Ftgp4KBDIpbwNTT30-GPVKyOuRt2G6_Xkxrh-9aEEz-SyzGPb96MQrbKD079fvYK94Wwyjsej6eMZ7Dtaf9cQ8M6hjhMjLxAUFMmlWQvfG-ux8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Structured+Forests+for+Fast+Edge+Detection&rft.au=Dollar%2C+Piotr&rft.au=Zitnick%2C+C.+Lawrence&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=1841&rft.epage=1848&rft_id=info:doi/10.1109%2FICCV.2013.231&rft.externalDocID=6751339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |