Structured Forests for Fast Edge Detection

Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image pa...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 1841 - 1848
Main Authors Dollar, Piotr, Zitnick, C. Lawrence
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.231

Cover

Abstract Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain measures may be evaluated. The result is an approach that obtains real time performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets.
AbstractList Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain measures may be evaluated. The result is an approach that obtains real time performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets.
Author Dollar, Piotr
Zitnick, C. Lawrence
Author_xml – sequence: 1
  givenname: Piotr
  surname: Dollar
  fullname: Dollar, Piotr
  email: pdollar@microsoft.com
– sequence: 2
  givenname: C. Lawrence
  surname: Zitnick
  fullname: Zitnick, C. Lawrence
  email: larryz@microsoft.com
BookMark eNotjjtPwzAURo1UJNrCyMSSESGl3OtX7BGFFipVYuCxRo5zg4LapNjOwL9vpDJ9wzk6-hZs1g89MXaLsEIE-7gty68VBxQrLvCCLVAW1nIjgc_YHJWCXElrr9gixh8AMSE9Zw_vKYw-jYGabDMEiilm7RCyjYspWzfflD1TIp-6ob9ml63bR7r53yX73Kw_ytd89_ayLZ92ecfBpByNberacEm1sVx6lOSBuEdlvC8UWe2kacFKDYUHJbXW2EzAqQJq2TqxZPfn7jEMv-P0qDp00dN-73oaxlih1tZMaSwm9e6sdkRUHUN3cOGv0oVCIaw4AQnfTrs
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2013.231
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 1848
ExternalDocumentID 6751339
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-189dbb824eb8924c14ec0e2c158cc75e96a48f094607c0546661dc75a570b4fa3
IEDL.DBID RIE
ISSN 1550-5499
IngestDate Fri Jul 11 03:49:12 EDT 2025
Wed Aug 27 04:21:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-189dbb824eb8924c14ec0e2c158cc75e96a48f094607c0546661dc75a570b4fa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1669889217
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1669889217
ieee_primary_6751339
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.6025763
Snippet Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1841
SubjectTerms Algorithms
Computer vision
Decision trees
Detectors
Edge detection
Image color analysis
Image edge detection
Image segmentation
Learning
realtime vision
Segmentation
State of the art
structure learning
Training
Vegetation
Title Structured Forests for Fast Edge Detection
URI https://ieeexplore.ieee.org/document/6751339
https://www.proquest.com/docview/1669889217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bnnyauonziwo-iemSNk3b57kxhYmgk72VfIoIndj2xb_eS9ttoD74VlIKl1yT-93l7n4IXaWKCAeLsRA2wExzgqVlARZKhTFRmjDtAvqLBz5fsvtVtOqgm20tjDGmTj4zvnus7_L1WlUuVDYGcAsuVdpF3ThOm1qtXTwl5YCcyeYUBrNfszw6BI6dD7Trrzm-m0xeXFJX6AeOW65mVfl1FNf2ZdZHi41kTVrJu1-V0ldfP5o2_lf0fTTcVfJ5j1sbdYA6Jj9E_RZ6eu3GLgbo-qnuI1t9wqhj6yzKwgM4681EUXpT_Wq8W1PWWVv5EC1n0-fJHLc0CvgtIEmJaZJqKZOAGZmAt6UoM4qYQNEoUSqOTMoFSyy4eZzEChAcaI5qeCGimEhmRXiEevk6N8fIE1yExBhLmRTM2hBMm02pjUWiAMZpMUIDN_Xso-mUkbWzHqHLzeJm8Pe6KwmRm3VVZJTzNAGpaHzy96enaM9pqkkgOUM9WAxzDjCglBe1_r8BurSumQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSECkb8rIkn48K23X6dEQIKxEQw3JrtdtcYk2Jse_HXO7sUSNSDt6ZNk9ntdufN7Jt5ADeRoFzDYsK5cghLfUoSxRzChXADKlLKUp3Qn0z94Zw9LLxFDe42tTBSSkM-kx19ac7y06Uodaqsi-AWQ6poB3Y9jCqCVbXWNqMS-Yid6XofRsdvdB41Bic6Ctp22OyOer0XTetyO45WlzO6Kr82Y-NhBg2YrG1bEUveO2WRdMTXj7aN_zX-AFrbWj7raeOlDqEmsyNoVODTqn7tvAm3z6aTbPmJd7VeZ17kFgJaa8Dzwuqnr9K6l4XhbWUtmA_6s96QVEIK5M2hYUHsMEqTJHSYTEKMt4TNpKDSEbYXChF4MvI5CxUGej4NBGI4_HZ2ig-4F9CEKe4eQz1bZvIELO5zl0qpbJZwppSLzk1Ftgp4KBDIpbwNTT30-GPVKyOuRt2G6_Xkxrh-9aEEz-SyzGPb96MQrbKD079fvYK94Wwyjsej6eMZ7Dtaf9cQ8M6hjhMjLxAUFMmlWQvfG-ux8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Structured+Forests+for+Fast+Edge+Detection&rft.au=Dollar%2C+Piotr&rft.au=Zitnick%2C+C.+Lawrence&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=1841&rft.epage=1848&rft_id=info:doi/10.1109%2FICCV.2013.231&rft.externalDocID=6751339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon