A Modified Levenberg-Marquardt Algorithm For Tensor CP Decomposition in Image Compression
This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. The optimization problem related to the CP decomposition can be formulated as follows:\begin{equatio...
Saved in:
| Published in | DCC (Los Alamitos, Calif.) p. 563 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
19.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2375-0359 |
| DOI | 10.1109/DCC58796.2024.00080 |
Cover
| Abstract | This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. The optimization problem related to the CP decomposition can be formulated as follows:\begin{equation*}\mathop {\min }\limits_{{a_r},{b_r},{c_r}} \frac{1}{2}\left\| {{\mathcal{X}} - \sum\limits_{r = 1}^R {{a_r}} ^\circ {b_r}^\circ {c_r}} \right\|_F^2\tag{1}\end{equation*}where a r ○ b r ○ c r is a rank one tensor via an outer product and ∥ · ∥ F represents the Frobenius norm. In this study, we formulate (1) as a nonlinear least squares optimization problem. Then, we present an iterative Levenberg-Marquardt (LM)-based algorithm for computing the CP decomposition. Our approach addresses the computational intensity typically associated with the Jacobian matrix related to the nonlinear least squares of (1) by making use of the current Jacobian to predict the Jacobian for future steps. This significantly reduces the time since calculating the Jacobian matrix is prohibitively expensive when the dimension of the data is large. Ultimately, we test the algorithm on various datasets, including randomly generated tensors and RGB images. The proposed method proves to be both efficient and effective, offering a reduced computational burden compared to the traditional LM technique. A more detailed version of this article can be found on arXiv. 1 |
|---|---|
| AbstractList | This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. The optimization problem related to the CP decomposition can be formulated as follows:\begin{equation*}\mathop {\min }\limits_{{a_r},{b_r},{c_r}} \frac{1}{2}\left\| {{\mathcal{X}} - \sum\limits_{r = 1}^R {{a_r}} ^\circ {b_r}^\circ {c_r}} \right\|_F^2\tag{1}\end{equation*}where a r ○ b r ○ c r is a rank one tensor via an outer product and ∥ · ∥ F represents the Frobenius norm. In this study, we formulate (1) as a nonlinear least squares optimization problem. Then, we present an iterative Levenberg-Marquardt (LM)-based algorithm for computing the CP decomposition. Our approach addresses the computational intensity typically associated with the Jacobian matrix related to the nonlinear least squares of (1) by making use of the current Jacobian to predict the Jacobian for future steps. This significantly reduces the time since calculating the Jacobian matrix is prohibitively expensive when the dimension of the data is large. Ultimately, we test the algorithm on various datasets, including randomly generated tensors and RGB images. The proposed method proves to be both efficient and effective, offering a reduced computational burden compared to the traditional LM technique. A more detailed version of this article can be found on arXiv. 1 |
| Author | Dulal, Dipak Karim, Ramin Goudarzi Navasca, Carmeliza |
| Author_xml | – sequence: 1 givenname: Ramin Goudarzi surname: Karim fullname: Karim, Ramin Goudarzi email: rkarim@stillman.edu organization: Stillman College,Tuscaloosa,Alabama,US,35401 – sequence: 2 givenname: Dipak surname: Dulal fullname: Dulal, Dipak email: dpdulal@uab.edu organization: University of Alabama at Birmingham,Birmingham,Alabama,US,35294 – sequence: 3 givenname: Carmeliza surname: Navasca fullname: Navasca, Carmeliza email: cnavasca@uab.edu organization: University of Alabama at Birmingham,Birmingham,Alabama,US,35294 |
| BookMark | eNotjMFOAjEUAKvRREC-QA_9gcXXdrvbHskiSgLRAx48kdK-Yg27xXY14e_dRE-TzCQzJldd7JCQOwYzxkA_LJpGqlpXMw68nAGAggsy1bVWQoJQQ1OXZMRFLQsQUt-Qcc6fABygYiPyPqeb6IIP6Ogaf7DbYzoUG5O-vk1yPZ0fDzGF_qOly5joFrs8oHmlC7SxPcUc-hA7Gjq6as0BaTPIhDkP8pZce3PMOP3nhLwtH7fNc7F-eVo183UROJR94Z2RTjJfWuslrzRD8NrsK8OctL503HpAjyBrxiRU3shSSKVKube8Fs6KCbn_-wZE3J1SaE067xhIIRRo8QtICFUQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/DCC58796.2024.00080 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350385878 |
| EISSN | 2375-0359 |
| EndPage | 563 |
| ExternalDocumentID | 10533809 |
| Genre | orig-research |
| GroupedDBID | -~X 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-fda5d51f4ccf52691e0f9ab6a1d5cf4d2cf0efe05711506fa54358845bc273dc3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:05:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-fda5d51f4ccf52691e0f9ab6a1d5cf4d2cf0efe05711506fa54358845bc273dc3 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10533809 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-March-19 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | DCC (Los Alamitos, Calif.) |
| PublicationTitleAbbrev | DCC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020061 |
| Score | 1.8669045 |
| Snippet | This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 563 |
| SubjectTerms | CP decomposition Data compression Image coding image compresion image processing Image reconstruction Levenberg-Marquandt nonlinear least squares Optimization Tensor computation Tensors |
| Title | A Modified Levenberg-Marquardt Algorithm For Tensor CP Decomposition in Image Compression |
| URI | https://ieeexplore.ieee.org/document/10533809 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ05lKWKXD1xTsthJfKxSqoJo1UMrlVMVbxABCUTpha9nJkkLQkLilChS5MiOPW_s994Qcq09C1mBFE6Y-gISFKZgHdSR45rUShmkMrSod55Mw_GC3S_5shWr11oYY0xNPjN9vK3P8nWh1rhVBjMcwEmMcr3dKA4bsdY2u8Jg3NoKea64GSYJjyOBLAQfDbJr48cfBVTq-DHqkumm5YY28tJfV7KvPn-ZMv770_ZJ71uqR2fbIHRAdkx-SLqbWg20nbpH5HFAJ4XOLCBO-oCuTcjrciZp-YH_SEUHr09FmVXPb3RUlHQOyS1ckhkdGiSdt8wumuX07g1WIIoNNAzavEcWo9t5MnbasgpO5ruscqxOueaeZUpZrC_uGdcKGJTU01xZpn1lXWMNADlEi6FNOUCqOGZcKsA6WgXHpJMXuTkhVMXKCxSP6r2QQFjBNECcmBkOOTq8cUp62FWr98Y5Y7XppbM_np-TPRwu5Hh54oJ0qnJtLiHoV_KqHuwvrGKs1w |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOcCpLEXs-MA1JYudxscqpWqhqXpopXKqEi9QQROI0gtfz0ySFoSExClRpMiRJ7bf2O-9IeRWOQaygkRYfuwKSFCYhHlQdSxbxyZJvDjxDeqdo7E_mLGHOZ_XYvVSC6O1Lslnuo235Vm-yuQat8pghAM4CVCut8sZY7ySa23zK1yOa2MhxxZ3vTDkQUcgD8FFi-zS-vFHCZVyBek3yXjTdkUceW2vi6QtP3_ZMv774w5I61usRyfbZeiQ7Oj0iDQ31RpoPXiPyVOXRplaGsCcdIS-TcjssqI4_8C_pKDdt-csXxYvK9rPcjqF9BYu4YT2NNLOa24XXaZ0uII5iGIDFYc2bZFZ_34aDqy6sIK1dG1WWEbFXHHHMCkNVhh3tG0EhCV2FJeGKVcaWxsNUA7xom9iDqAqCBhPJKAdJb0T0kizVJ8SKgPpeJJ3yt0QTxjBFICcgGkOWTq8cUZa2FWL98o7Y7HppfM_nt-QvcE0Gi1Gw_HjBdnH0CHjyxGXpFHka30FEKBIrsvAfwHoXbAk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=DCC+%28Los+Alamitos%2C+Calif.%29&rft.atitle=A+Modified+Levenberg-Marquardt+Algorithm+For+Tensor+CP+Decomposition+in+Image+Compression&rft.au=Karim%2C+Ramin+Goudarzi&rft.au=Dulal%2C+Dipak&rft.au=Navasca%2C+Carmeliza&rft.date=2024-03-19&rft.pub=IEEE&rft.eissn=2375-0359&rft.spage=563&rft.epage=563&rft_id=info:doi/10.1109%2FDCC58796.2024.00080&rft.externalDocID=10533809 |