A Modified Levenberg-Marquardt Algorithm For Tensor CP Decomposition in Image Compression

This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. The optimization problem related to the CP decomposition can be formulated as follows:\begin{equatio...

Full description

Saved in:
Bibliographic Details
Published inDCC (Los Alamitos, Calif.) p. 563
Main Authors Karim, Ramin Goudarzi, Dulal, Dipak, Navasca, Carmeliza
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.03.2024
Subjects
Online AccessGet full text
ISSN2375-0359
DOI10.1109/DCC58796.2024.00080

Cover

Abstract This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. The optimization problem related to the CP decomposition can be formulated as follows:\begin{equation*}\mathop {\min }\limits_{{a_r},{b_r},{c_r}} \frac{1}{2}\left\| {{\mathcal{X}} - \sum\limits_{r = 1}^R {{a_r}} ^\circ {b_r}^\circ {c_r}} \right\|_F^2\tag{1}\end{equation*}where a r ○ b r ○ c r is a rank one tensor via an outer product and ∥ · ∥ F represents the Frobenius norm. In this study, we formulate (1) as a nonlinear least squares optimization problem. Then, we present an iterative Levenberg-Marquardt (LM)-based algorithm for computing the CP decomposition. Our approach addresses the computational intensity typically associated with the Jacobian matrix related to the nonlinear least squares of (1) by making use of the current Jacobian to predict the Jacobian for future steps. This significantly reduces the time since calculating the Jacobian matrix is prohibitively expensive when the dimension of the data is large. Ultimately, we test the algorithm on various datasets, including randomly generated tensors and RGB images. The proposed method proves to be both efficient and effective, offering a reduced computational burden compared to the traditional LM technique. A more detailed version of this article can be found on arXiv. 1
AbstractList This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. The optimization problem related to the CP decomposition can be formulated as follows:\begin{equation*}\mathop {\min }\limits_{{a_r},{b_r},{c_r}} \frac{1}{2}\left\| {{\mathcal{X}} - \sum\limits_{r = 1}^R {{a_r}} ^\circ {b_r}^\circ {c_r}} \right\|_F^2\tag{1}\end{equation*}where a r ○ b r ○ c r is a rank one tensor via an outer product and ∥ · ∥ F represents the Frobenius norm. In this study, we formulate (1) as a nonlinear least squares optimization problem. Then, we present an iterative Levenberg-Marquardt (LM)-based algorithm for computing the CP decomposition. Our approach addresses the computational intensity typically associated with the Jacobian matrix related to the nonlinear least squares of (1) by making use of the current Jacobian to predict the Jacobian for future steps. This significantly reduces the time since calculating the Jacobian matrix is prohibitively expensive when the dimension of the data is large. Ultimately, we test the algorithm on various datasets, including randomly generated tensors and RGB images. The proposed method proves to be both efficient and effective, offering a reduced computational burden compared to the traditional LM technique. A more detailed version of this article can be found on arXiv. 1
Author Dulal, Dipak
Karim, Ramin Goudarzi
Navasca, Carmeliza
Author_xml – sequence: 1
  givenname: Ramin Goudarzi
  surname: Karim
  fullname: Karim, Ramin Goudarzi
  email: rkarim@stillman.edu
  organization: Stillman College,Tuscaloosa,Alabama,US,35401
– sequence: 2
  givenname: Dipak
  surname: Dulal
  fullname: Dulal, Dipak
  email: dpdulal@uab.edu
  organization: University of Alabama at Birmingham,Birmingham,Alabama,US,35294
– sequence: 3
  givenname: Carmeliza
  surname: Navasca
  fullname: Navasca, Carmeliza
  email: cnavasca@uab.edu
  organization: University of Alabama at Birmingham,Birmingham,Alabama,US,35294
BookMark eNotjMFOAjEUAKvRREC-QA_9gcXXdrvbHskiSgLRAx48kdK-Yg27xXY14e_dRE-TzCQzJldd7JCQOwYzxkA_LJpGqlpXMw68nAGAggsy1bVWQoJQQ1OXZMRFLQsQUt-Qcc6fABygYiPyPqeb6IIP6Ogaf7DbYzoUG5O-vk1yPZ0fDzGF_qOly5joFrs8oHmlC7SxPcUc-hA7Gjq6as0BaTPIhDkP8pZce3PMOP3nhLwtH7fNc7F-eVo183UROJR94Z2RTjJfWuslrzRD8NrsK8OctL503HpAjyBrxiRU3shSSKVKube8Fs6KCbn_-wZE3J1SaE067xhIIRRo8QtICFUQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DCC58796.2024.00080
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350385878
EISSN 2375-0359
EndPage 563
ExternalDocumentID 10533809
Genre orig-research
GroupedDBID -~X
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-fda5d51f4ccf52691e0f9ab6a1d5cf4d2cf0efe05711506fa54358845bc273dc3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:05:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-fda5d51f4ccf52691e0f9ab6a1d5cf4d2cf0efe05711506fa54358845bc273dc3
PageCount 1
ParticipantIDs ieee_primary_10533809
PublicationCentury 2000
PublicationDate 2024-March-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-19
  day: 19
PublicationDecade 2020
PublicationTitle DCC (Los Alamitos, Calif.)
PublicationTitleAbbrev DCC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020061
Score 1.8669045
Snippet This paper proposes a new variant of the Levenberg-Marquardt (LM) algorithm used for third order tensor Canonical Polyadic (CP) decomposition with an emphasis...
SourceID ieee
SourceType Publisher
StartPage 563
SubjectTerms CP decomposition
Data compression
Image coding
image compresion
image processing
Image reconstruction
Levenberg-Marquandt
nonlinear least squares
Optimization
Tensor computation
Tensors
Title A Modified Levenberg-Marquardt Algorithm For Tensor CP Decomposition in Image Compression
URI https://ieeexplore.ieee.org/document/10533809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ05lKWKXD1xTsthJfKxSqoJo1UMrlVMVbxABCUTpha9nJkkLQkLilChS5MiOPW_s994Qcq09C1mBFE6Y-gISFKZgHdSR45rUShmkMrSod55Mw_GC3S_5shWr11oYY0xNPjN9vK3P8nWh1rhVBjMcwEmMcr3dKA4bsdY2u8Jg3NoKea64GSYJjyOBLAQfDbJr48cfBVTq-DHqkumm5YY28tJfV7KvPn-ZMv770_ZJ71uqR2fbIHRAdkx-SLqbWg20nbpH5HFAJ4XOLCBO-oCuTcjrciZp-YH_SEUHr09FmVXPb3RUlHQOyS1ckhkdGiSdt8wumuX07g1WIIoNNAzavEcWo9t5MnbasgpO5ruscqxOueaeZUpZrC_uGdcKGJTU01xZpn1lXWMNADlEi6FNOUCqOGZcKsA6WgXHpJMXuTkhVMXKCxSP6r2QQFjBNECcmBkOOTq8cUp62FWr98Y5Y7XppbM_np-TPRwu5Hh54oJ0qnJtLiHoV_KqHuwvrGKs1w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOcCpLEXs-MA1JYudxscqpWqhqXpopXKqEi9QQROI0gtfz0ySFoSExClRpMiRJ7bf2O-9IeRWOQaygkRYfuwKSFCYhHlQdSxbxyZJvDjxDeqdo7E_mLGHOZ_XYvVSC6O1Lslnuo235Vm-yuQat8pghAM4CVCut8sZY7ySa23zK1yOa2MhxxZ3vTDkQUcgD8FFi-zS-vFHCZVyBek3yXjTdkUceW2vi6QtP3_ZMv774w5I61usRyfbZeiQ7Oj0iDQ31RpoPXiPyVOXRplaGsCcdIS-TcjssqI4_8C_pKDdt-csXxYvK9rPcjqF9BYu4YT2NNLOa24XXaZ0uII5iGIDFYc2bZFZ_34aDqy6sIK1dG1WWEbFXHHHMCkNVhh3tG0EhCV2FJeGKVcaWxsNUA7xom9iDqAqCBhPJKAdJb0T0kizVJ8SKgPpeJJ3yt0QTxjBFICcgGkOWTq8cUZa2FWL98o7Y7HppfM_nt-QvcE0Gi1Gw_HjBdnH0CHjyxGXpFHka30FEKBIrsvAfwHoXbAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=DCC+%28Los+Alamitos%2C+Calif.%29&rft.atitle=A+Modified+Levenberg-Marquardt+Algorithm+For+Tensor+CP+Decomposition+in+Image+Compression&rft.au=Karim%2C+Ramin+Goudarzi&rft.au=Dulal%2C+Dipak&rft.au=Navasca%2C+Carmeliza&rft.date=2024-03-19&rft.pub=IEEE&rft.eissn=2375-0359&rft.spage=563&rft.epage=563&rft_id=info:doi/10.1109%2FDCC58796.2024.00080&rft.externalDocID=10533809