A 'Human-in-the-Loop' approach for Information Extraction from Privacy Policies under Data Scarcity
Machine-readable representations of privacy policies are door openers for a broad variety of novel privacy-enhancing and, in particular, transparency-enhancing technologies (TETs). In order to generate such representations, transparency information needs to be extracted from written privacy policies...
Saved in:
| Published in | IEEE European Symposium on Security and Privacy Workshops (Online) pp. 76 - 83 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2768-0657 |
| DOI | 10.1109/EuroSPW59978.2023.00014 |
Cover
| Abstract | Machine-readable representations of privacy policies are door openers for a broad variety of novel privacy-enhancing and, in particular, transparency-enhancing technologies (TETs). In order to generate such representations, transparency information needs to be extracted from written privacy policies. However, respective manual annotation and extraction processes are laborious and require expert knowledge. Approaches for fully automated annotation, in turn, have so far not succeeded due to overly high error rates in the specific domain of privacy policies. In the end, a lack of properly annotated privacy policies and respective machine-readable representations persists and enduringly hinders the development and establishment of novel technical approaches fostering policy perception and data subject informedness.In this work, we present a prototype system for a ' Human-in-the-Loop' approach to privacy policy annotation that integrates ML-generated suggestions and ultimately human annotation decisions. We propose an ML-based suggestion system specifically tailored to the constraint of data scarcity prevalent in the domain of privacy policy annotation. On this basis, we provide meaningful predictions to users thereby streamlining the annotation process. Additionally, we also evaluate our approach through a prototypical implementation to show that our ML-based extraction approach provides superior performance over other recently used extraction models for legal documents. |
|---|---|
| AbstractList | Machine-readable representations of privacy policies are door openers for a broad variety of novel privacy-enhancing and, in particular, transparency-enhancing technologies (TETs). In order to generate such representations, transparency information needs to be extracted from written privacy policies. However, respective manual annotation and extraction processes are laborious and require expert knowledge. Approaches for fully automated annotation, in turn, have so far not succeeded due to overly high error rates in the specific domain of privacy policies. In the end, a lack of properly annotated privacy policies and respective machine-readable representations persists and enduringly hinders the development and establishment of novel technical approaches fostering policy perception and data subject informedness.In this work, we present a prototype system for a ' Human-in-the-Loop' approach to privacy policy annotation that integrates ML-generated suggestions and ultimately human annotation decisions. We propose an ML-based suggestion system specifically tailored to the constraint of data scarcity prevalent in the domain of privacy policy annotation. On this basis, we provide meaningful predictions to users thereby streamlining the annotation process. Additionally, we also evaluate our approach through a prototypical implementation to show that our ML-based extraction approach provides superior performance over other recently used extraction models for legal documents. |
| Author | Leschke, Nicola Grunewald, Elias Pallas, Frank Maschhur, Faraz Gebauer, Michael |
| Author_xml | – sequence: 1 givenname: Michael surname: Gebauer fullname: Gebauer, Michael email: mg@ise.tu-berlin.de organization: Information Systems Engineering - TU Berlin,Berlin – sequence: 2 givenname: Faraz surname: Maschhur fullname: Maschhur, Faraz email: f.maschhur@ise.tu-berlin.de organization: Information Systems Engineering - TU Berlin,Berlin – sequence: 3 givenname: Nicola surname: Leschke fullname: Leschke, Nicola email: nl@ise.tu-berlin.de organization: Information Systems Engineering - TU Berlin,Berlin – sequence: 4 givenname: Elias surname: Grunewald fullname: Grunewald, Elias email: eg@ise.tu-berlin.de organization: Information Systems Engineering - TU Berlin,Berlin – sequence: 5 givenname: Frank surname: Pallas fullname: Pallas, Frank email: fp@ise.tu-berlin.de organization: Information Systems Engineering - TU Berlin,Berlin |
| BookMark | eNotjlFLwzAUhaMoOOf-gWDe9pR5kzRN8zjmdIOBgyk-jps0ZZG1KWkn7t9b1JfvnIePw7klV01sPCEPHGacg3lcnlLcbT-UMbqYCRByBgA8uyATo00hFUihBahLMhI6LxjkSt-QSdd9DpoUkAEUI-LmdLo61diw0LD-4NkmxnZKsW1TRHegVUx03QyssQ-xocvvPqH7rVWKNd2m8IXuTLfxGFzwHT01pU_0CXukO4fJhf58R64rPHZ-8p9j8v68fFus2Ob1Zb2Yb1gY3vSsslraPLNWlUWVcfTCOq-0EE5IXnpUFge4SntVelN6qCCzOtPGGWc1ZnJM7v92g_d-36ZQYzrvOXADec7lD_HqW8U |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/EuroSPW59978.2023.00014 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Law |
| EISBN | 9798350327205 |
| EISSN | 2768-0657 |
| EndPage | 83 |
| ExternalDocumentID | 10190661 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i204t-fb73b64bb5d8f41ae2bce5722c231dea5baea5cf7e5de9de0f04b7479c9cb7a43 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:21:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-fb73b64bb5d8f41ae2bce5722c231dea5baea5cf7e5de9de0f04b7479c9cb7a43 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10190661 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE European Symposium on Security and Privacy Workshops (Online) |
| PublicationTitleAbbrev | EUROSPW |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204008 |
| Score | 1.8762314 |
| Snippet | Machine-readable representations of privacy policies are door openers for a broad variety of novel privacy-enhancing and, in particular, transparency-enhancing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 76 |
| SubjectTerms | Annotations Data privacy Error analysis Law Manuals Privacy Prototypes |
| Title | A 'Human-in-the-Loop' approach for Information Extraction from Privacy Policies under Data Scarcity |
| URI | https://ieeexplore.ieee.org/document/10190661 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8MwDDZrTzvt1bE3Pgx6cpaHHSfHsbWU0ZXCVtZbsR0ZyiAtJd3r10920o0NBruEkEMwkhPpk_V9IuRSCAi5koIVsdWMox_wP1gAyyCJEiu1tdZxh-9H6WDC76Zi2pDVPRcGAHzzGQTu1p_lFwuzdqUy_MIxfKUO7LRkltZkra-CShK7_Zg1PVxRmF-5evbD-EnkiJQCNyY88IjgxxwVH0b6O2S0WUDdPfIcrCsdmI9f2oz_XuEu6Xwz9uj4KxbtkS0o90lrqF4PiLmmXV-qZ_OSYbrHhovFsks3YuIUs1bakJKck2jvrVrVbAfquCf42vmLMu_UKwgjrqaOdrait6pS1B3fGMzjO2TS7z3eDFgzWoHN0UwVs1omOuVaiyKzPFIQawNCxrHBfK8AJbTCi7ESRAF5AaENuUbkkZvcaKl4ckja5aKEI0LzxIDhMtMSoRVmBMrkmUNVNnRSZCI6Jh1np9myVs-YbUx08sfzU7LtfFW3xJ6RdrVawzkG_kpfeId_Avtorfo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTkq-LbPQg9bcxjt0mOoi1V01Kwxd7K7mYWipCUkvr69c4mqaIgeAkhh7DMbDLfNzvfDCGXQoDLZShY6hvFOPoB_4MpsAgCLzChMsZY7XB_0O6N-f1ETGqxeqmFAYCy-Awce1ue5ae5XtpUGX7hGL7aluxsCM65qORaXymVwLc7MqqruDw3vrIZ7cfhk4iRKzl2ULhTcoIfk1TKQNLdJoPVEqr6kWdnWShHf_zqzvjvNe6Q5rdmjw6_otEuWYNsj6wn8nWf6GvaKpP1bJYxBHwsyfN5i67aiVPErbSWJVk30c5bsaj0DtSqT_C1sxep32nZQxiZNbXCswW9lYWk9gBHI5JvknG3M7rpsXq4ApuhmQpmVBioNldKpJHhngRfaRCh72tEfClIoSRetAlBpBCn4BqXK-QesY61CiUPDkgjyzM4JDQONGgeRipEcoWYQOo4srzKuLYZmfCOSNPaaTqv-mdMVyY6_uP5BdnsjfrJNLkbPJyQLeu3qkD2lDSKxRLOEAYU6rx0_idGhrFH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+European+Symposium+on+Security+and+Privacy+Workshops+%28Online%29&rft.atitle=A+%27Human-in-the-Loop%27+approach+for+Information+Extraction+from+Privacy+Policies+under+Data+Scarcity&rft.au=Gebauer%2C+Michael&rft.au=Maschhur%2C+Faraz&rft.au=Leschke%2C+Nicola&rft.au=Grunewald%2C+Elias&rft.date=2023-07-01&rft.pub=IEEE&rft.eissn=2768-0657&rft.spage=76&rft.epage=83&rft_id=info:doi/10.1109%2FEuroSPW59978.2023.00014&rft.externalDocID=10190661 |