Deblur-NSFF: Neural Scene Flow Fields for Blurry Dynamic Scenes

In this work, we present a method to address the problem of novel view and time synthesis of complex dynamic scenes considering the input video is subject to blurriness caused due to camera or object motion or out-of-focus blur. Neural Scene Flow Field (NSFF) has shown remarkable results by training...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Workshop on Applications of Computer Vision pp. 3646 - 3655
Main Authors Luthra, Achleshwar, Gantha, Shiva Souhith, Song, Xiyun, Yu, Heather, Lin, Zongfang, Peng, Liang
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.01.2024
Subjects
Online AccessGet full text
ISSN2642-9381
DOI10.1109/WACV57701.2024.00362

Cover

Abstract In this work, we present a method to address the problem of novel view and time synthesis of complex dynamic scenes considering the input video is subject to blurriness caused due to camera or object motion or out-of-focus blur. Neural Scene Flow Field (NSFF) has shown remarkable results by training a dynamic NeRF to capture motion in the scene, but this method is not robust to unstable camera handling which can lead to blurred renderings. We propose Deblur-NSFF, a method that learns spatially-varying blur kernels to simulate the blurring process and gradually learns a sharp time-conditioned NeRF representation. We describe how to optimize our representation for sharp space-time view synthesis. Given blurry input frames, we perform both quantitative and qualitative comparison with state-of-the-art methods on modified NVIDIA Dynamic Scene dataset. We also compare our method with Deblur-NeRF, a method that has been designed to handle blur in static scenes. The demonstrated results show that our method outperforms prior work.
AbstractList In this work, we present a method to address the problem of novel view and time synthesis of complex dynamic scenes considering the input video is subject to blurriness caused due to camera or object motion or out-of-focus blur. Neural Scene Flow Field (NSFF) has shown remarkable results by training a dynamic NeRF to capture motion in the scene, but this method is not robust to unstable camera handling which can lead to blurred renderings. We propose Deblur-NSFF, a method that learns spatially-varying blur kernels to simulate the blurring process and gradually learns a sharp time-conditioned NeRF representation. We describe how to optimize our representation for sharp space-time view synthesis. Given blurry input frames, we perform both quantitative and qualitative comparison with state-of-the-art methods on modified NVIDIA Dynamic Scene dataset. We also compare our method with Deblur-NeRF, a method that has been designed to handle blur in static scenes. The demonstrated results show that our method outperforms prior work.
Author Luthra, Achleshwar
Peng, Liang
Lin, Zongfang
Song, Xiyun
Gantha, Shiva Souhith
Yu, Heather
Author_xml – sequence: 1
  givenname: Achleshwar
  surname: Luthra
  fullname: Luthra, Achleshwar
  email: achleshl@andrew.cmu.edu
  organization: Carnegie Mellon University
– sequence: 2
  givenname: Shiva Souhith
  surname: Gantha
  fullname: Gantha, Shiva Souhith
  email: sgantha3@gatech.edu
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Xiyun
  surname: Song
  fullname: Song, Xiyun
  email: xsong@futurewei.com
  organization: Futurewei Technologies
– sequence: 4
  givenname: Heather
  surname: Yu
  fullname: Yu, Heather
  email: hyu@futurewei.com
  organization: Futurewei Technologies
– sequence: 5
  givenname: Zongfang
  surname: Lin
  fullname: Lin, Zongfang
  email: zlin1@futurewei.com
  organization: Futurewei Technologies
– sequence: 6
  givenname: Liang
  surname: Peng
  fullname: Peng, Liang
  email: lpeng@futurewei.com
  organization: Futurewei Technologies
BookMark eNotzNFKwzAUgOEoCm5zb7CLvEDrSU7SJN7I7KwKY15s6OVI01OodK2kDunbbzCv_puPf8puur4jxhYCUiHAPXwt809tDIhUglQpAGbyis2dcRY1oLBOwjWbyEzJxKEVd2w6DN9n5oTDCXtaUdkeY7LZFsUj39Ax-pZvA3XEi7b_40VDbTXwuo_8-eziyFdj5w9NuKDhnt3Wvh1o_t8Z2xUvu_wtWX-8vufLddJIUL9JRegdZk4rRc5XJgilRGarYIIlU6pSy7IGjwaD0kYaCOCVl0ZTaTUBztjism2IaP8Tm4OP416AsuiUxBP-lUm7
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV57701.2024.00362
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350318920
EISSN 2642-9381
EndPage 3655
ExternalDocumentID 10483942
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-de3a9369544e9ad7c144168dc7c8e7b4b52bf0a373c457270c0a4a275eb85e03
IEDL.DBID RIE
IngestDate Wed Aug 27 02:11:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-de3a9369544e9ad7c144168dc7c8e7b4b52bf0a373c457270c0a4a275eb85e03
PageCount 10
ParticipantIDs ieee_primary_10483942
PublicationCentury 2000
PublicationDate 2024-Jan.-3
PublicationDateYYYYMMDD 2024-01-03
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-3
  day: 03
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Workshop on Applications of Computer Vision
PublicationTitleAbbrev WACV
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.2524693
Snippet In this work, we present a method to address the problem of novel view and time synthesis of complex dynamic scenes considering the input video is subject to...
SourceID ieee
SourceType Publisher
StartPage 3646
SubjectTerms 3D computer vision
Algorithms
Applications
Cameras
Computer vision
Dynamics
Interpolation
Proposals
Rendering (computer graphics)
Training
Virtual / augmented reality
Title Deblur-NSFF: Neural Scene Flow Fields for Blurry Dynamic Scenes
URI https://ieeexplore.ieee.org/document/10483942
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66J5_mj4m_yYOvmVlzWRpfRKdlCA7BqXsbSXoFcWxjaxH9603aTkUQfCttoCHh7vtyubuPkFPrpBNpBiySVjMAp5nxsMcyp6Vn-JlxZejibtDtP8LtSI7qYvWyFgYRy-QzbIfH8i4_nbkihMq8hYPHc_Aed13F3apYa-V2hfZUpK6N63B99nzZe5JK8XAGjEKHbBEEcX4oqJQAkjTJYPXrKm_ktV3ktu0-fnVl_PfcNknru1aP3n-h0BZZw-k2adbkktamu9whF96zTIoFGzwkyTkNPTnMxH_2ro4mk9kbTUIq25J6Dkuv_LjFO72uxOqrQcsWGSY3w16f1eoJ7CXikLMUhQlqfRIAtUmVC0enbpw65WJUFqyMbMaNUMKB9CyGO27AREqijSVysUsa09kU9wgFxVNvtjJCyKDjlDYuNgYzqxCUlWaftMJ6jOdVf4zxaikO_nh_SDbCnpSBDHFEGvmiwGMP7bk9Kbf0E7wOoj4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA4yH_Rp_pj42zz4mpk1l6XxRXRapm5FcOreRpKmII5NthbRv96k7VQEwbfSBlou3H2X6333IXSsDTcsSYEEXEsCYCRRDvZIaiR3GX6qTFG66Mft7gPcDPmwIqsXXBhrbdF8Zpv-sviXn0xN7ktlzsPB4Tm4iLvMAYCXdK1F4GXSJSMVO65F5cnTeeeRC0H9KTDwM7KZl8T5oaFSQEhUR_Hi5WXnyEszz3TTfPyay_jvr1tDjW-2Hr77wqF1tGQnG6hepZe4ct75JjpzsWWcz0h8H0Wn2E_lUGP32AU7HI2nbzjyzWxz7LJYfOHWzd7xZSlXXy6aN9Aguhp0uqTSTyDPAYWMJJYpr9fnbGWlSoTxh6d2mBhhQis0aB7olCommAHu8hhqqAIVCG51yC1lW6g2mU7sNsIgaOIclwcWUmgZIZUJlbKpFhaE5moHNbw9Rq_lhIzRwhS7f9w_QivdQb836l3Ht3to1e9PUdZg-6iWzXJ74IA-04fF9n4Cbreliw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=Deblur-NSFF%3A+Neural+Scene+Flow+Fields+for+Blurry+Dynamic+Scenes&rft.au=Luthra%2C+Achleshwar&rft.au=Gantha%2C+Shiva+Souhith&rft.au=Song%2C+Xiyun&rft.au=Yu%2C+Heather&rft.date=2024-01-03&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=3646&rft.epage=3655&rft_id=info:doi/10.1109%2FWACV57701.2024.00362&rft.externalDocID=10483942