Non-Negative Matrix Factorization for Link Prediction Preserving Row and Column Spaces
Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product approximates the adjacency matrix of a network. Most existing NMF-based models incorporate auxiliary information with well-defined geometric meanings...
Saved in:
| Published in | Proceedings (IEEE International Conference on Data Mining) pp. 1451 - 1456 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2374-8486 |
| DOI | 10.1109/ICDM58522.2023.00190 |
Cover
| Abstract | Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product approximates the adjacency matrix of a network. Most existing NMF-based models incorporate auxiliary information with well-defined geometric meanings, but there is no evidence that they have reasonable mathematical interpretations. In this paper, we propose a model, NMF-CR, that incorporates both row-space and column-space information into the NMF framework. NMF-CR not only carries well-defined geometric meanings but also boasts a reasonable mathematical interpretation. Moreover, we provide efficient updating rules to infer the parameters of NMF-CR with guaranteed convergence. Extensive experiments demonstrate that our model achieves higher prediction accuracy than its competitors. |
|---|---|
| AbstractList | Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product approximates the adjacency matrix of a network. Most existing NMF-based models incorporate auxiliary information with well-defined geometric meanings, but there is no evidence that they have reasonable mathematical interpretations. In this paper, we propose a model, NMF-CR, that incorporates both row-space and column-space information into the NMF framework. NMF-CR not only carries well-defined geometric meanings but also boasts a reasonable mathematical interpretation. Moreover, we provide efficient updating rules to infer the parameters of NMF-CR with guaranteed convergence. Extensive experiments demonstrate that our model achieves higher prediction accuracy than its competitors. |
| Author | Yu, Weiren Yan, Liping |
| Author_xml | – sequence: 1 givenname: Liping surname: Yan fullname: Yan, Liping email: lipingyan@njust.edu.cn organization: Nanjing University of Science and Technology,Jiangsu,Nanjing,China – sequence: 2 givenname: Weiren surname: Yu fullname: Yu, Weiren email: weiren.yu@warwick.ac.uk organization: University of Warwick,Coventry,UK,CV4 7AL |
| BookMark | eNotzMlOwzAUhWGDQKItfYMu_AIp12PsJQoUKrUFMW0rx7mpDK1TOaEMT08ErM6vb3GG5CQ2EQmZMJgyBvZiXlwtlVGcTzlwMQVgFo7I2ObWCAUCcmPyYzLgIpeZkUafkWHbvgIIrQUMyMuqidkKN64LB6RL16XwSWfOd00K3z02kdZNoosQ3-h9wir4X-uzxXQIcUMfmg_qYkWLZvu-i_Rx7zy25-S0dtsWx_87Is-z66fiNlvc3cyLy0UWOMgu88hLLx0KVjpvrZGVNb6ua8UFqrI0oAxCb7xSTnoHgKhzb2uvtdS-0mJEJn-_ARHX-xR2Ln2tGUimcsnFD-v0VRQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICDM58522.2023.00190 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350307887 |
| EISSN | 2374-8486 |
| EndPage | 1456 |
| ExternalDocumentID | 10415742 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-ce2bc4ae31bac9984d98cfff523e5bb8058e0d982d5a4ca00ee67c9fc6646cd63 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:06:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-ce2bc4ae31bac9984d98cfff523e5bb8058e0d982d5a4ca00ee67c9fc6646cd63 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10415742 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Dec.-1 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE International Conference on Data Mining) |
| PublicationTitleAbbrev | ICDM |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0036630 |
| Score | 1.8632554 |
| Snippet | Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1451 |
| SubjectTerms | column space Convergence Data mining link prediction Mathematical models non-negative matrix factorization Predictive models row space Time complexity |
| Title | Non-Negative Matrix Factorization for Link Prediction Preserving Row and Column Spaces |
| URI | https://ieeexplore.ieee.org/document/10415742 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J0_1UfFNDl5Ts7vZ17laqtBF1EpvJY9JEWG3yBbFX28mu2tBELyFOWSXTDKPZL5vCLkSmcqt0IJZnhsmQiWZ5BAw7ZIRiBXua7yHnBXJdC7uF_GiBat7LAwA-OIzGOHQv-WbSm_wqsydcOduXC7XI700SxqwVmd2I-c6eYuNC3h-fTe-mblQOESwVYgspoE3u9sOKt6BTAak6D7d1I28jTa1GumvX6yM__63PTLcYvXow48X2ic7UB6QQdesgbZn95C8FFXJClh5om86Q2b-Tzrx3XZaKCZ18SvF3NTNh883XoYlGmhOyhV9rD6oLA0do0Er6dMaq7mGZD65fR5PWdtUgb2GXNRMQ6i0kBAFSmqXawmTZ9pa6xJSpxuV8TgD7mShiaXQknOAJNW51UkiEm2S6Ij0y6qEY0IjbG4ldZYqA84OpDJ3wYOVEHMjuA3FCRniOi3XDW_Gslui0z_kZ2QXddUUi5yTfv2-gQvn8mt16VX9Dbt5rLE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3qaHxO_zcFrZtqlXXuejk3XIrrJbiMfryJCO6RD8a83L20dCIK38A5pyUveR_J-v0fIlYhUnAktWMZjw4SvJJMcPKZtMgKBwn2N95BJGo5m4m4ezGuwusPCAIArPoMuDt1bvin0Cq_K7Am37sbmcptkKxBCBBVcqzG8Pes8eY2O83h8PR7cJDYY9hFu5SOPqecM77qHinMhwzZJm49XlSNv3VWpuvrrFy_jv_9ul3TWaD368OOH9sgG5Puk3bRroPXpPSDPaZGzFF4c1TdNkJv_kw5dv50ajEltBEsxO7Xz4QOOk2GRBhqU_IU-Fh9U5oYO0KTl9GmJ9VwdMhveTgcjVrdVYK8-FyXT4CstJPQ8JbXNtoSJI51lmU1JrXZUxIMIuJX5JpBCS84Bwr6OMx2GItQm7B2SVl7kcERoD9tbSR31lQFrCfoytuFDJiHgRvDMF8ekg-u0WFbMGYtmiU7-kF-S7dE0mSwm4_T-lOyg3qrSkTPSKt9XcG4DgFJdOLV_A_REr_4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Data+Mining%29&rft.atitle=Non-Negative+Matrix+Factorization+for+Link+Prediction+Preserving+Row+and+Column+Spaces&rft.au=Yan%2C+Liping&rft.au=Yu%2C+Weiren&rft.date=2023-12-01&rft.pub=IEEE&rft.eissn=2374-8486&rft.spage=1451&rft.epage=1456&rft_id=info:doi/10.1109%2FICDM58522.2023.00190&rft.externalDocID=10415742 |