Non-Negative Matrix Factorization for Link Prediction Preserving Row and Column Spaces

Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product approximates the adjacency matrix of a network. Most existing NMF-based models incorporate auxiliary information with well-defined geometric meanings...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Data Mining) pp. 1451 - 1456
Main Authors Yan, Liping, Yu, Weiren
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2023
Subjects
Online AccessGet full text
ISSN2374-8486
DOI10.1109/ICDM58522.2023.00190

Cover

Abstract Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product approximates the adjacency matrix of a network. Most existing NMF-based models incorporate auxiliary information with well-defined geometric meanings, but there is no evidence that they have reasonable mathematical interpretations. In this paper, we propose a model, NMF-CR, that incorporates both row-space and column-space information into the NMF framework. NMF-CR not only carries well-defined geometric meanings but also boasts a reasonable mathematical interpretation. Moreover, we provide efficient updating rules to infer the parameters of NMF-CR with guaranteed convergence. Extensive experiments demonstrate that our model achieves higher prediction accuracy than its competitors.
AbstractList Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product approximates the adjacency matrix of a network. Most existing NMF-based models incorporate auxiliary information with well-defined geometric meanings, but there is no evidence that they have reasonable mathematical interpretations. In this paper, we propose a model, NMF-CR, that incorporates both row-space and column-space information into the NMF framework. NMF-CR not only carries well-defined geometric meanings but also boasts a reasonable mathematical interpretation. Moreover, we provide efficient updating rules to infer the parameters of NMF-CR with guaranteed convergence. Extensive experiments demonstrate that our model achieves higher prediction accuracy than its competitors.
Author Yu, Weiren
Yan, Liping
Author_xml – sequence: 1
  givenname: Liping
  surname: Yan
  fullname: Yan, Liping
  email: lipingyan@njust.edu.cn
  organization: Nanjing University of Science and Technology,Jiangsu,Nanjing,China
– sequence: 2
  givenname: Weiren
  surname: Yu
  fullname: Yu, Weiren
  email: weiren.yu@warwick.ac.uk
  organization: University of Warwick,Coventry,UK,CV4 7AL
BookMark eNotzMlOwzAUhWGDQKItfYMu_AIp12PsJQoUKrUFMW0rx7mpDK1TOaEMT08ErM6vb3GG5CQ2EQmZMJgyBvZiXlwtlVGcTzlwMQVgFo7I2ObWCAUCcmPyYzLgIpeZkUafkWHbvgIIrQUMyMuqidkKN64LB6RL16XwSWfOd00K3z02kdZNoosQ3-h9wir4X-uzxXQIcUMfmg_qYkWLZvu-i_Rx7zy25-S0dtsWx_87Is-z66fiNlvc3cyLy0UWOMgu88hLLx0KVjpvrZGVNb6ua8UFqrI0oAxCb7xSTnoHgKhzb2uvtdS-0mJEJn-_ARHX-xR2Ln2tGUimcsnFD-v0VRQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDM58522.2023.00190
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350307887
EISSN 2374-8486
EndPage 1456
ExternalDocumentID 10415742
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-ce2bc4ae31bac9984d98cfff523e5bb8058e0d982d5a4ca00ee67c9fc6646cd63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:06:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-ce2bc4ae31bac9984d98cfff523e5bb8058e0d982d5a4ca00ee67c9fc6646cd63
PageCount 6
ParticipantIDs ieee_primary_10415742
PublicationCentury 2000
PublicationDate 2023-Dec.-1
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-1
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Data Mining)
PublicationTitleAbbrev ICDM
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0036630
Score 1.8632554
Snippet Non-negative Matrix Factorization (NMF) has been widely adopted for link prediction, aiming at finding multiple low-dimensional matrices whose product...
SourceID ieee
SourceType Publisher
StartPage 1451
SubjectTerms column space
Convergence
Data mining
link prediction
Mathematical models
non-negative matrix factorization
Predictive models
row space
Time complexity
Title Non-Negative Matrix Factorization for Link Prediction Preserving Row and Column Spaces
URI https://ieeexplore.ieee.org/document/10415742
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J0_1UfFNDl5Ts7vZ17laqtBF1EpvJY9JEWG3yBbFX28mu2tBELyFOWSXTDKPZL5vCLkSmcqt0IJZnhsmQiWZ5BAw7ZIRiBXua7yHnBXJdC7uF_GiBat7LAwA-OIzGOHQv-WbSm_wqsydcOduXC7XI700SxqwVmd2I-c6eYuNC3h-fTe-mblQOESwVYgspoE3u9sOKt6BTAak6D7d1I28jTa1GumvX6yM__63PTLcYvXow48X2ic7UB6QQdesgbZn95C8FFXJClh5om86Q2b-Tzrx3XZaKCZ18SvF3NTNh883XoYlGmhOyhV9rD6oLA0do0Er6dMaq7mGZD65fR5PWdtUgb2GXNRMQ6i0kBAFSmqXawmTZ9pa6xJSpxuV8TgD7mShiaXQknOAJNW51UkiEm2S6Ij0y6qEY0IjbG4ldZYqA84OpDJ3wYOVEHMjuA3FCRniOi3XDW_Gslui0z_kZ2QXddUUi5yTfv2-gQvn8mt16VX9Dbt5rLE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3qaHxO_zcFrZtqlXXuejk3XIrrJbiMfryJCO6RD8a83L20dCIK38A5pyUveR_J-v0fIlYhUnAktWMZjw4SvJJMcPKZtMgKBwn2N95BJGo5m4m4ezGuwusPCAIArPoMuDt1bvin0Cq_K7Am37sbmcptkKxBCBBVcqzG8Pes8eY2O83h8PR7cJDYY9hFu5SOPqecM77qHinMhwzZJm49XlSNv3VWpuvrrFy_jv_9ul3TWaD368OOH9sgG5Puk3bRroPXpPSDPaZGzFF4c1TdNkJv_kw5dv50ajEltBEsxO7Xz4QOOk2GRBhqU_IU-Fh9U5oYO0KTl9GmJ9VwdMhveTgcjVrdVYK8-FyXT4CstJPQ8JbXNtoSJI51lmU1JrXZUxIMIuJX5JpBCS84Bwr6OMx2GItQm7B2SVl7kcERoD9tbSR31lQFrCfoytuFDJiHgRvDMF8ekg-u0WFbMGYtmiU7-kF-S7dE0mSwm4_T-lOyg3qrSkTPSKt9XcG4DgFJdOLV_A_REr_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Data+Mining%29&rft.atitle=Non-Negative+Matrix+Factorization+for+Link+Prediction+Preserving+Row+and+Column+Spaces&rft.au=Yan%2C+Liping&rft.au=Yu%2C+Weiren&rft.date=2023-12-01&rft.pub=IEEE&rft.eissn=2374-8486&rft.spage=1451&rft.epage=1456&rft_id=info:doi/10.1109%2FICDM58522.2023.00190&rft.externalDocID=10415742